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ABSTRACT 
 

Cardiac Computed Tomography (CT) is one of the important noninvasive approaches to evaluate Cardiovascular Diseases (CVDs). Structural 

characterization of systole and diastole states from ECG-gated cardiac CT images may provide a marker for CVDs. The aims of the study were 

to characterize muscle structures of normal cardiac CT images using statistical texture analysis and to compare between systole and diastole 

phases. The cardiac CT images were obtained from Osirix Dicom Image Library. The region of interest of each image was defined for upper, 

middle, and bottom region of the CT images. The RoI images were analyzed using First, Second, and Higher-order statistical texture analyses. 

The texture features of systole and diastole phases were obtained and analyzed. From the First-order texture analysis, the middle region shows 

the highest structural differences of systole and diastole, while from the Second- and Higher-order texture analysis, middle and bottom regions 

show the highest structural differences of systole and diastole.  

______________________________________________________________________________________ 

 
INTRODUCTION 
 

Cardiovascular Diseases (CVDs) is the leading cause of death in 

Malaysia and it is in demand for noninvasive diagnostic approaches. 

Computed Tomography (CT) is one of the noninvasive approach that 

plays an important supplementary role in the evaluation of patients 

with CVDs (Goo et al., 2003). Cardiac CT can be used to detect and 

evaluate heart function problems related to heart muscle 

(myocardium) such as myocardial perfusion (Williams and Newby, 

2016). The evaluation of heart muscle condition is believed can be 

performed using structural characterization of the cardiac CT images. 

ECG-gated cardiac CT on the other hand, plays important role in 

determining systolic and diastolic states based on the extraction of 

heart beat information. Cardiac structural characterization of systole 

and diastole states may provide a marker for CVDs such as heart 

failure and dilated cardiomyopathy. 

Based on the concept of image processing, the anatomical view 

from ECG-gated CT images can be characterized based on two 

approaches: (1) geometrical and (2) structural techniques. The 

structural characterization technique can be realized using texture 

analysis which can be classified into statistical, model-based, and 

signal processing methods (Tuceryan and Jain, 1993). In this paper, 

the study was focused on the structural characterization of normal 

ECG-gated cardiac CT images using statistical texture analysis. 

Statistical texture analysis represents the texture indirectly by the way 

that the gray levels are distributed over the pixels in the region 

(Haralick, 1979). The statistical texture analysis can be divided into 

First-, Second-, and Higher-order. Each analysis has its own statistical 

texture features which represent different structural information. 

Therefore, it is expected that the statistical texture analysis may 

provide certain structural characteristics of  normal systole and 

diastole phases as the baseline for normal cardiac states. 

 

 

 

 

METHODOLOGY 
 

Data Collection and Pre-processing 
 

 

 

 

 

 

 

 
Fig. 1  RoI location for upper region of cardiac CT images (slice 30) for 
(a) systole (b) diastole phases 
 

 
 
 
 
 
 
 
Fig. 2  RoI location for middle region of cardiac CT images (slice 70) for 
(a) systole (b) diastole phases 

 
 
 
 
 
 
 
 
Fig. 3  RoI location for bottom region of cardiac CT images (slice 110) 
for (a) systole (b) diastole phases 
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Six axial multi-planar reconstruction (MPR) cardiac CT images 

of normal systole and diastole phases were obtained from FOURDIX 

file in Dicom Image Library (OsiriX, 2016). The images were visually 

inspected and analyzed. All images were standardized to 0 to 255 gray 

level range. The full cardiac CT images of each systole and diastole 

phases contain 188 slices. With the consultation from the radiologist, 

the specific slice for each upper, middle, and bottom regions were 

chosen. Fig. 1 until Fig. 3 show the CT images for upper (slice 30), 

middle (slice 70), and bottom (slice 110) regions of systole and 

diastole phases image. The dashes boxes are indicating the Region of 

Interest (RoI) locations for each image of systole and diastole phases.   

The RoI of each image was defined for upper, middle, and 

bottom regions of the cardiac CT images. The inclusion criteria for the 

RoIs selection is the area that includes the heart and coronary artery. 

The exclusion criteria for the RoIs selection is the lung and bones. 

The RoI was selected in the same pixels location and size (100 x 100 

pixels) for each slice of the CT images. 

 

Texture Analysis 
The texture analysis was performed using the First-, Second-, and 

Higher-order statistical texture analyses. All approaches were 

implemented using MATLAB R2013a software. The First-order 

texture analysis was performed based on the intensity histogram 

texture measures that were calculated from the original image values. It 

describes the overall number of pixels with a certain gray level but 

independent of their location in the image (Aggarwal et al., 2012). 

Mean, Variance, and Kurtosis features were calculated for the First-

order texture analysis.  

The Second-order texture analysis was performed based on Gray 

Level Co-Occurrence Matrix (GLCM). This method is based on the 

joint probability distributions of pairs of pixels. It is used to estimate 

the properties of two or more pixel values occurring at specific 

locations relative to each other (Haralick et al., 1973). In this study, the 

GLCM was calculated for pixel distance equal to one (d = 1) with four 

orientation angle (horizontal (0 ˚), diagonal (45˚), vertical (90˚), and 

anti-diagonal (135˚)). Contrast, Energy, and Correlation features were 

calculated for the Second-order texture analysis. 

Then, the Higher-order texture analysis was performed based on 

gray level run length matrix (GLRLM). This texture analysis method 

gives information about the connected length of a particular pixel in a 

definite direction. The matrix is defined by specifying the direction and 

then count the occurrence of runs for each gray levels and length in this 

direction (Galloway, 1975). Gray Level Non-uniformity (GLN), Run 
Length Non-Uniformity (RLN), and Run Percentage (RP) features 

were calculated for the Higher-order texture analysis. 

Eventually, the extracted texture features from each analysis were 

evaluated and the values were compared to differentiate between 

systole and diastole phases. The values were also compared between 

upper, middle, and bottom region images.  

 

RESULTS AND DISCUSSION 
 
 The results from the First-, Second-, and Higher-order texture 

analyses are shown in Fig. 4 until Fig. 12. Each graph in the figures 

shows the feature values of systole and diastole phases for upper, 

middle, and bottom region of the cardiac CT images. From Fig.4 to 

Fig. 6, the graphs show that in all cardiac CT image regions (upper, 

middle, and bottom), the diastole images produced higher values for all 

First-order texture features (Mean, Variance, and Kurtosis) compared 

to those of in systole images.  

 The Mean feature can be refered to the central tendency of the gray 

level value (Tamura et al., 1978). Higher Mean value describes a 

central tendency of higher gray level value which represents larger 

bright area, while lower Mean value describes a central tendency of 

lower gray level value which represent larger dark area. The Variance 

value simply contains textural regularity information in the image 

(Tamura et al., 1978). Higher Variance value represents higher textural 

regularity. The Kurtosis feature describes the uniformity of gray level 

distribution based on the histogram flatness (Aggarwal et al., 2012). A 

positive Kurtosis value represents a fairly uniform gray level 

distribution with sharper peak. While a negative Kurtosis value 

represents a mid-level gray levels uniform distribution with flatter 

peak. The uniformity increases with the increment of positive Kurtosis 

value. Then, from the Mean, Variance, and Kurtosis features result, the 

middle region RoIs produced the highest differences between systole 

and diastole phases. From this finding, it can be described that the 

middle region RoIs are more promising for structural characterization 

of systole and diastole phases. 

Graphs in Fig. 7 to Fig. 9 show that the diastole images produced 

higher value for Contrast feature in all regions (upper, middle, and 

bottom), Energy feature in the upper region and Correlation feature in 

the middle region. Then, the systole images produced higher value for 

Energy feature in middle and bottom regions, and Correlation feature 

in bottom region. The Contrast feature represents the softness of the 

image (Gebejes and Huertas, 2013). Higher Contrast value indicates 

heavier textures and lower Contrast values image indicates softer 

textures. Energy feature is a measure of homogeneity of an image 

which defines the uniformity of the image (Albregtsen, 2008). Higher 

Energy feature value indicates a more uniform image. The Correlation 

feature describes the gray level linear dependency on those of 

neighboring pixels in an image (Gebejes and Huertas, 2013).  
 
 

 
Fig. 4  Mean feature profile of First-order texture analysis for slice 30 
(upper), 70 (middle), and 110 (bottom) images 
 
 

 
Fig. 5  Variance feature profile of First-order texture analysis for slice 
30 (upper), 70 (middle), and 110 (bottom) images 
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Fig.6  Kurtosis feature profile of First-order texture analysis for slice 30 
(upper), 70 (middle), and 110 (bottom) images  
 
 

 
Fig. 7  Contrast feature reasult of Second-order texture analysis for 
slice 30 (upper), 70 (middle), and 110 (bottom) images  
 
 

 
Fig. 8  Energy feature profile of Second-order texture analysis for slice 
30 (upper), 70 (middle), and 110 (bottom) images 
 
 

 
Fig. 9  Kurtosis feature profile of Second-order texture analysis for slice 
30 (upper), 70 (middle), and 110 (bottom) images 
 
 

 
Fig.10  GLN feature profile of Higher-order texture analysis for slice 30 
(upper), 70 (middle), and 110 (bottom) images 
 

 

 

 

 

 
Fig.11 RLN feature reasult of Higher-order texture analysis for slice 30 
(upper), 70 (middle), and 110 (bottom) images 
 

 

 
Fig.12  RP feature profile of Higher-order texture analysis for slice 30 
(upper), 70 (middle), and 110 (bottom) images 
 

Correlation feature represents displacement and strain 

characteristics which rely on unique image patterns to track 

displacement (Bay, 1995). Higher Correlation value indicates higher 

pixels displacement in an image. Then, from the Contrast and Energy 

features result, the middle region RoIs produced the highest 

differences between systole and diastole phases. Next, from the 

Correlation feature result, the bottom region RoIs produced the 

highest difference between systole and diastole phases. It can be 

described that the middle and bottom region RoIs are more promising 

for structural characterization of systole and diastole phases. 

From Fig.10 until Fig. 12, the graphs show that in all cardiac CT 

image regions (upper, middle, and bottom), the systole images 

produced higher values for all Higher-order texture features (GLN, 

RLN, and RP) compared to systole images. The Higher-order texture 
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analysis used the concept of gray level run which is defined as the 

length in number of pixels of consecutive pixels that have the same 

gray level value. The GLN feature measures the uniformity of run 

distribution in an image ( art - on at  and  l erich-Bayarri, 2016). 

Higher GLN value represents higher uniformity of the run 

distribution. The RLN measures the uniformity of run length and 

increases with the number of runs of same length ( art - on at  and 

Alberich-Bayarri, 2016).. The RP is the ratio between the number of 

runs over the number of pixels in the image ( art - on at  and 

Alberich-Bayarri, 2016).. Higher RP value indicates that the number 

of runs is higher than the number of pixels in the image. Then, from 

the GLN and RLN features result, the bottom region RoIs produced 

the highest differences between systole and diastole images. Next, 

from the RP feature result, the middle region RoIs produced highest 

difference between systole and diastole phases. It can be described 

that the middle and bottom region RoI images are more promising for 

structural characterization of systole and diastole phases. 

From the results, it can be summarized that the First-, Second-, 

and Higher-order statistical texture analysis can produce structural 

characterization for systole and diastole phases from ECG-gated 

cardiac CT images. It can be described that different position of 

muscles and tissues of the heart and coronary anatomy produced 

different structural characterization. From this finding, the statistical 

texture analysis of ECG-gated cardiac CT images may provide useful 

information that can be related to the heart muscle (myocardium) 

condition. The result from this study may serve as the baseline 

findings for normal heart muscle condition. In the future, it is 

expected that statistical texture analysis of cardiac CT images become 

more valuable in assisting the evaluation of CVDs condition that 

related to heart muscle including cardiomyopathy and heart failure 

(Sparrow, 2009). 

 

CONCLUSION 

 

In this paper, cardiac CT image characterization of systole and 

diastole phases was performed using statistical texture analysis. Based 

on the study, the upper, middle, and bottom region of the cardiac CT 

images produced different structural characterization of systole and 

diastole phases. From the First-order texture analysis, the middle 

region shows the highest structural differences of systole and diastole 

phases, while from the Second- and Higher-order texture analysis, 

middle and bottom regions show the highest structural differences of 

systole and diastole phases. This paper is a proof of concept that 

texture analysis can be used to characterize the cardiac structures 

during systole and diastole phases using an open source data.  In the 

future, this study can be implemented for evaluation and 

characterization of multiple cardiac CT images obtained from 

retrospective or prospective data collection.  
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