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ABSTRACT 
 
Bubble sizes have been shown to have profound effects on the nonlinear response of microbubbles. This paper endeavours to apply a theoretical 

model to predict and understand the effects of bubble size to the overall bubble dynamics such that bubble-mediated applications may be 

optimized, controlled and the desirable effects are achieved. The Hoff model for SonoVue® was solved numerically and the effects of varying 

bubble radii are examined. It has been found that the effects of bubble sizes are significant and may alter a bubble’s bifurcation characteristics 

and route to chaos. The finding also suggests the possibility of suppressing the chaotic oscillations of microbubbles by reducing the bubble size. 

Furthermore, by increasing the bubble size, the transition from order to chaos occurs at lower driving pressure amplitudes. 

_______________________________________________________________________________________ 

 
INTRODUCTION 
 

Microbubbles and ultrasound are rapidly emerging as a promising 

tool for noninvasive therapy and drug delivery (Lee, 2016; Nejad, 

2016; Orde, 2016). In the context of non-invasive therapy, for 

example, the operational transition of using microbubbles and 

ultrasound from an imaging modality to a therapeutic modality is an 

increase of average acoustic intensity (Moyer, 2015) for which the 

end result is a beam of high-intensity focused ultrasound (HIFU). The 

operation is dependent on inertial cavitation and aimed at producing 

bioeffects such as tissue destruction and vascular occlusion (Moyer, 

2015). 

Despite the substantial amount of theoretical and experimental 

research that has been conducted, the dynamics of microbubbles 

subjected to ultrasound is yet to be fully understood. It is important to 

appreciate that, unlike other medical imaging contrast agents, 

microbubbles have a complex nonlinear interaction with ultrasound. 

For example, a physical behaviour in acoustic cavitation is inertial 

cavitation for which microbubbles experience violent collapse. When 

the microbubbles are close to a wall, micro jets which are associated 

with puncturing the cell membrane (Nejad, 2016) may occur. While 

this is desirable for drug/gene delivery, it may also cause tissue 

damage if not properly controlled. 

Drug/gene delivery also undergo stable cavitation upon entering 

the blood stream until the targeted site is reached. It is therefore 

important to identify the parameters that will result in such response 

and to avoid premature drug release due to inertial cavitation. Thus, 

the ability to understand and predict bubble dynamics is of paramount 

importance such that the desirable effects are achieved and bubble-

mediated applications are optimized and controlled. 

Studies have shown that acoustical response of microbubbles are 

highly dependent on microbubble size (Van der Meer, 2007). 

Microbubbles have a size distribution resulting in a mean size and 

a size range. For SonoVue® microbubbles, the mean radius is 𝑅" = 

1.5𝜇𝑚 and 95% of the bubbles smaller than 10𝜇𝑚 (Gorce, 2000). 

Since microbubble size may vary quite significantly in the bubble 

cluster, it is thus important to understand and clarify how the size may 

affect the response and how we may control the oscillations. 

Here, we compare the theoretical model with experimental data 

from (Van der Meer, 2007) to validate the model and the code 

implemented throughout this paper. We then analyse the bifurcation 

characteristics and study the various aspects of the microbubble 

dynamics with changing the radius. We will also investigate the 

chaotic behaviour of an ultrasound contrast agent based on the shell 

modelling of a SonoVue® microbubble in an ultrasonic field and 

explore ways to suppress chaotic oscillations. 

 
NUMERICAL MODELING 
 

Consider the following equation of Hoff form with shell 

encapsulation terms for a SonoVue® microbubbles as used by (Hoff, 

2001): 

 
where 𝑅 𝑡, 𝑅", 𝜌, 𝛾, 𝜂5, 𝑃" and 𝑃9?@ represent the instantaneous 

bubble radius, equilibrium bubble radius, density of liquid, polytropic 

exponent for bubble gas, effective liquid viscosity which accounts for 

thermal damping, atmospheric pressure, and acoustic driving force. 

The parameter values of 𝜌 = 1000 𝑘𝑔 𝑚I0, 𝛾 = 1.07, 𝜂5 = 

2×10I0𝑃𝑎. 𝑠 and 𝑃" = 101.3 𝑘𝑃𝑎 for bubbles in water at 20N𝐶, would 

be used for the simulations in this paper following (Tu J., 2009). 
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Fig. 1 Schematic sketch of an encapsulated bubble 
 

The microbubble in Eq. (1) describes the oscillation of a bubble 

shown in Fig. 1 which consists of a continuous layer of elastic and 

incompressible shell encapsulation with thickness denoted by 𝑑6. The 

shell separates the gas microbubble from the bulk Newtonian liquid 

and stabilizes the microbubbles against dissolution. The parameters 

for shell encapsulation is given by shell shear viscosity, 𝜂6 and shell 

shear modulus, 𝐺6. In this paper, the values for the shell encapsulation 

parameters which will be used are 𝑑6 = 4𝑛𝑚, 𝜂6 = 0.5 𝑃𝑎 𝑠 and 𝐺6 = 

23 𝑀𝑃𝑎 (Hoff, 2001) 

 
COMPARISON WITH EXPERIMENTAL DATA 
 

 
Fig. 2 (a) An ultrasound forcing function of 8-cycle, 2.5-MHz, 

40-kPa, whose two first and two last cycles are modulated by a 
Gaussian envelope as used in experiment (b) The simulated 
responses for the Hoff Model (--) are compared to the 
experimental data (o) for 𝑅"=1.7𝜇𝑚 
 

To check the validity of the code written to solve the mathematical 

model, Eq. (1) was solved using the parameter values defined in the 

previous section and compared to with the results of the experiment 

performed by (Van der Meer, 2007), where they studied the effect of 

shell encapsulation on the dynamical behaviour of microbubbles by 

measuring the bubble radius using optical imaging. 

The forcing function in Fig. 2(a) shows an external driving 

ultrasound burst of 8-cycles with the two first and two last cycles 

being modulated by a Gaussian envelope as done in the experimental 

setup from Fig. 4 in (Van der Meer, 2007) for 𝑅" = 1.7𝜇𝑚. The 

amplitude and frequency of the signal are 𝑃RST = 40𝑘𝑃𝑎 and 𝑓RST = 

2.5𝑀𝐻𝑧 respectively as shown in row 4, Fig. 4 in (Van der Meer, 

2007). 

The results are shown in Fig. 2(b) suggest that code written to 

solve the Hoff model performs well as it is in good agreement with 

experimental data in the central region. The simulation data show 

deviations from the experimental data at the beginning and end stages. 

This is due to the fact that numerical data will undergo a transient 

phase before reaching a steady-state. This will not be an issue for the 

numerical simulations in the remainder of this study because only 

oscillations in the post-transient state will be considered. 

 
RESULTS AND DISCUSSION 

 
Our goal is to perform bifurcation analysis that can help us 

understand the effects of initial radius to the dynamical behaviour of 

an encapsulated microbubble, SonoVue® in an ultrasonic field. The 

range of initial radius values considered here is from 1.5𝜇𝑚 to 

2𝜇𝑚which are within the range used in clinical trials (May, 2002). 

The pressure-bifurcation diagram plotted in Fig. 3 is produced by 

solving Eq. (1) as a function of the following forcing function: 

 
 

where the driving frequency, 𝑓RST, is 1.3 𝑀𝐻𝑧. The bifurcation 

diagrams have been obtained in the following way. Starting from 

𝑃RST = 10𝑘𝑃𝑎, the time-radius curve was solved until steady-state is 

reached. Using the bubble expansion ratio at every forcing period (𝑇 = 

1/𝑓RST) from the stroboscopic maps as the state variable (Parlitz, 

1990). After the projection has been plotted, the control parameter is 

increased by a small step Δ𝑃RST = 1𝑘𝑃𝑎 and the new bifurcation 

points are calculated for 𝑃RST + Δ𝑃RST. This procedure is repeated 

until 𝑃RST = 2 𝑀𝑃𝑎. 

For 𝑅" = 1.5𝜇𝑚, the bifurcation diagram of Fig. 3(a) clearly 

reveals a sequence of period-doubling at 𝑃RST ≈ 0.7 𝑀𝑃𝑎, 1.1 𝑀𝑃𝑎 

and 1.3 𝑀𝑃𝑎 which indicates the existence of several frequencies of 

oscillation for the bubble. This state, however, does not persist 

indefinitely as it undergoes period undoubling for higher 𝑃RST. The 

smallest bubble does not undergo chaos even at higher driving 

pressure amplitudes. 

The slight increase of initial bubble radius to 𝑅" = 1.7𝜇𝑚 

significantly changes the route to chaos. An inspection of Fig. 3(b) 

reveals that, unlike the smaller bubble 𝑅" = 1.5𝜇𝑚, there exists a 

region of chaos between 0.9 𝑀𝑃𝑎 ≤ 𝑃RST ≤ 1.4 𝑀𝑃𝑎 before settling 

down to periodic oscillations at higher 𝑃RST. 

By further increasing the initial radius to 𝑅" = 2.0𝜇𝑚 in Fig. 3(c), 

the bifurcation analysis shows a classical period-doubling route to 

chaos with windows of order for 0.95 𝑀𝑃𝑎 ≤ 𝑃RST ≤ 1.05 𝑀𝑃𝑎. The 

bubble undergoes a saddle-node bifurcation at 𝑃RST ≈ 1.8 𝑀𝑃𝑎. This 

is characterised by a jump in the bubble expansion ratio which 

indicates the destruction of a stable limit cycle and the birth of a new 

one. 
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Fig. 3 Bifurcation diagrams of microbubbles for 𝑓RST = 1.4 

𝑀𝐻𝑧 with initial bubble radius (a) 𝑅" = 1.5𝜇𝑚 (b) 𝑅" = 1.7𝜇𝑚 and 

(c) 𝑅" = 2.0𝜇𝑚. 

 

The effects of the initial radius are complicated as it adds another 

degree of nonlinearity to the readily highly-nonlinear equation 

modelled by the Hoff equation. However, it is apparent from the 

results of this section that the smaller initial radius plays an important 

role in reducing the bubble’s degree of chaos. This is a very useful 

finding as it demonstrates the ability to suppress chaotic oscillations 

according to the bubble size. This may well serve as an alternative to 

the dual forcing frequency approach (Zhang, 2017). By studying the 

bifurcation characteristics ins Fig. 3, it is also found that the route to 

chaos for a larger bubble transitions from order to chaos at lower 

driving pressure amplitudes. 

 
CONCLUSION 

 

A Hoff theoretical model with shell encapsulation parameters for 

SonoVue® microbubbles was implemented for predicting dynamics 

of bubbles in various sizes. Numerical simulations were performed 

and it was found that the bubble size may alter a bubble’s bifurcation 

characteristics and route to chaos. The finding also suggests the 

possibility of suppressing the chaotic oscillations of microbubbles by 

reducing the bubble size. Furthermore, by increasing the bubble size, 

the transition from order to chaos occurs at lower driving pressure 

amplitudes. 
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