
A.Rani et.al / International Medical Device and Technology Conference 2017 

 

138 

            
eISBN 978-967-0194-93-6 FBME 

 

 

 
 

Manufacturing Methods for Medical Prostheses– A Review 
Ahmad Majdi Abdul Rani a,*, Rosdayanti Fua-Nizan a, Mohamad Yazid Din b, Abdul'Azeez 
Abdu Aliyu a 
 

a 
Mechanical Engineering Department Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Perak, Malaysia 

b 
Orthopaedic Department, Hospital Tuanku Fauziah, Jalan Tun Abdul Razak, Pusat Bandar Kangar, 01000 Kangar, Perlis, Malaysia 

  
* majdi@utp.edu.my  

 

 

ABSTRACT 

 

The main objective of this paper is to review the manufacturing methods that can be used for fabricating medical prostheses. The medical 

prostheses have different functions and applications. Selection of manufacturing method is made based on the material, design, and mechanical 

properties of the prostheses.  The conventional manufacturing methods that had been applied for manufacturing prostheses are machining, 

incremental sheet forming and investment casting. The combination of computer numerical control and additive manufacturing has been able to 

improve the process efficiency of these methods. However, direct fabrication by additive manufacturing has been able to replace the 

conventional method with better process efficiency and product accuracy. 

______________________________________________________________________________________________________________ 

 

INTRODUCTION 
 

Prosthetics is a division of medicine that focuses on surgical 

procedures for replacing the body parts that have been removed due to 

illness or accidents with artificial components. The objectives of the 

artificial component are not only to replace the human part but also to 

restore its normal function. These technologies facilitate recovery and 

improvement of human biological functions continuously. There are 

two types of biomechanical prostheses, ready-made prostheses and 

custom-made prostheses. Ready-made prostheses are designed and 

manufactured in standard sizes. Unlike ready-made prostheses, 

custom-made prostheses are made to fit the patient. These prostheses 

can be fabricated by different manufacturing methods. The selection 

of suitable manufacturing method is made based on standard criteria 

such the design, application, and material. This paper will review the 

manufacturing methods that can be applied for fabricating medical 

prostheses for various applications using different types of materials.  

 

MANUFACTURING METHOD 
 

Conventional Manufacturing Methods 
 

One of the conventional manufacturing methods that can be used to 

manufacture prostheses is machining. It is a method that involves 

material removal process that is conducted with a cutting tool. 

Machining used to be one of the main manufacturing methods for 

fabricating orthopaedic implants. Compared with advanced 

manufacturing technologies, machining is considered to be fairly cost 

effective and user-friendly. It can also be used to improve the surface 

finish of the finished product. This method is highly recommended for 

manufacturing implant components with simple designs. The 

combination of machining parameters can determine the quality of the 

finished products (Ahilan, Kumanan, Sivakumaran, & Edwin Raja 

Dhas, 2013). Optimum working parameters need to be determined 

according to the working material in order to achieve the good surface 

finish. With the development of advanced manufacturing 

technologies, conventional machining was replaced by computer 

numerical control (CNC) machining. The aid of CNC has managed to 

reduce the process duration, making it more user-friendly with a 

minimum requirement of human input. Micromachining method, on 

the other hand is a method that uses laser aided technology (Wall, 

2012) that has the ability to modify the surface structure of polymer 

components with micro-scale surface texture. It is also applied for 

manufacturing tiny implant components as well. 5 axis CNC have 

better flexibility in machining complex geometrical designs as 

compared to 3-axis CNC machine. The only limitation of machining is 

the deposition of raw material waste (Cronskär, Bäckström, & Rännar, 

2013). Incremental sheet forming (ISF) on the other hand is a forming 

process of sheet metal through continuous forming. This method uses 

a rotating tool through a progressive increase in pressure and it is 

adaptable to CNC milling equipment (Fig. 1).  
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Fig. 1: SPIF schematic diagram (Ambrogio, De Napoli, Filice, Gagliardi, 
& Muzzupappa, 2005) 

 

There are a few techniques of ISF such as single-point (SPIF), 

and two-point (TPIF). SPIF is a method that uses a single point 

contact while TPIF utilizes two points contact on the sheet metal. This 

method can produce asymmetrical product via spinning, flow forming, 

and shear forming. This die-less method makes the process more cost 

effective compared to machining. However, ISF processing time is 

directly dependent on the sheet thickness, material and part geometry. 

Determining the process parameters can be a challenge especially with 

a new material. Therefore, this method is more suitable for 

straightforward geometry and small-batch manufacturing.  Ryutaro et. 

al (Hino, Kawabata, & Yoshida, 2014) had developed ISF by the 

application of laser and was able to improve the formability of the 

sheet material and reduce the residual stress on the finished product. 

Unlike ISF, investment casting is a manufacturing method that uses 

patterned moulds for casting (Pattnaik, Karunakar, & Jha, 2012). 

Molten metal is poured into the mould and left to cool to form solid 

metal. Investment casting used to be an alternative method for 

manufacturing metal medical implants. However, the conventional 

method for fabricating mould used to be expensive and time-

consuming. To overcome this limitation, additive manufacturing was 

introduced for fabricating the mould. This combination has managed 

to reduce the lead time and has made the investment casting 

economically more effective. Compared with wax, silicone made 

mould are easier to remove from the solid product as well. One 

application of investment casting in manufacturing medical implants 

is in prosthodontics that focuses on designing and fabricating artificial 

implants for mouth parts including teeth. However, the quality of 

implant fabricated is depending on the quality of the mould. Good 

mould will produce an implant with excellent fit and reliability.  

 

Additive Manufacturing Methods 
Additive manufacturing (AM) is a manufacturing method by 

material deposition in layers that build a part based on standard 

tessellation language (STL) formatted file from computer-aided 

design (CAD) software. The product of AM can be designed by the 

digital scan of the part and from the conceptual part design. It is a 

direct and straightforward method that is more feasible and relevant 

for manufacturing medical implants. The AM has the flexibility of 

using a variety of available materials with desired customizations such 

as porosity and surface roughness as well. There are three types of 

AM method which are solid based, liquid based and powder based 

AM. Fused deposition manufacturing (FDM) is one application of 

solid based AM that eject thin filament through an extrusion nozzle on 

a moving platform as illustrated in Fig. 2. 
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Fig. 2: FDM equipment 

 

FDM is the most appropriate manufacturing method polymer 

based implant because it provides full control on the working 

parameters. FDM is known to be cost effective and user-friendly as 

well. However, due to the limited material available, FDM application 

for prostheses is limited as compared to metal based AM. Unlike solid 

based AM, liquid based AM is a solidification process of liquid raw 

material via curing. Some of the methods of liquid based AM are 

stereolithography (SLA), and continuous liquid interface production 

(CLIP). SLA’s building process is known as photopolymerization. It 

is a process of polymer solidification by application of ultraviolet 

(UV) rays that act as a catalyst for the liquid resin reaction (Fig. 3). It 

is a continuous process of making the part layer by layer until a solid 

object is constructed.   
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Fig. 3: SLA schematic diagram (“Stereolithography,” n.d., “The Best 
SLA 3D Printers,” n.d.) 

SLA is known to have excellent dimensional accuracy and 

surface finish for polymer based products (Zhou, Ye, & Zhang, 2015). 

Due to this advantage, nano-SLA technology was developed for the 

purpose of manufacturing micro devices with complex geometry (Ha 

& Yang, 2014). Furthermore, micro-SLA (MSLA) that was developed 

could produce fine resolution scaffold with excellent mechanical 

properties that are similar to bone. This technology is showing great 

potential in the fabrication of customized tissue scaffold for cell 

regeneration. Continuous liquid interface production (CLIP) is another 

modified liquid-based AM that was developed to improve staircase 

effect (Fig. 4) (Janusziewicz, Tumbleston, Quintanilla, Mecham, & 

DeSimone, 2016).  

 

Solid model  
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Fig. 4: Staircase effect on finished product fabricated by SLA (Arni & 
Gupta, 2001)  

 

CLIP deposits continuous liquid compound (Yang, Zeng, Vieira, 

& Olsson, 2016) that manipulates oxygen-comprised area, known as 

the ‘dead zone’ (Fig. 5). It is a small gap in between the oxygen 

absorbent window and the curing resin. Unlike SLA, CLIP promotes 

faster building process.. 
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Fig. 5: CLIP equipment (“CLIP Process,” n.d.) 

This technology is relatively new and has the ability to process 

biological and elastic materials (J. R. Tumbleston et al., 2015) that are 

suitable for artificial tissue and cartilage. Unlike the previous two AM 

types, most of the powder based AM equipment are used in 

manufacturing metal based medical implant. The AM equipment that 

are working by using powder material are laser sintering, selective 

laser melting (SLM), electron beam melting (EBM), and laser 

engineered net shaping (LENS). Selective laser sintering (SLS) is a 

manufacturing technique that solidifies powder material through 

sintering. It is solidification process that uses thermal energy to fuse 

the powdered particles together at a temperature in between the 

melting temperature and half of the melting temperature (Kruth et al., 

2005). SLS has a wide variety of process materials such as a polymer, 

metal alloy, and metal-ceramics mixture (Tiwari & Pande, 2014). 

Direct Metal Laser Sintering (DMLS) works specifically with 

powdered metals and metal alloys. Unlike SLA, SLS and DMLS built 

part does not require support structure because of the excess powder 

act as surrounding support (Fig. 6).  
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Fig. 6: General schematic diagram of DMLS (“3D Metal Printed Parts,” 
n.d.; Frazier, n.d.) 

 

SLM has a similar working principle to DMLS that employ full 

melting mechanism. This method is highly recommended for metals 

and as well as ceramics because it produces lightweight but strong and 

robust products. The pore structure of the part can also be customized. 

However, the working parameters need to be customized for different 

materials, making this method more difficult to control (Pacurar & 

Pacurar, 2016). Another method which is EBM is known to produce 

high accuracy parts by utilizing electron beam to melt the powdered 

material (Fig. 7). 
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Fig. 7: EBM equipment and schematic diagram (“EBM Hardware,” n.d.) 

 

EBM is more time efficient and user-friendly compared to SLA 

because electron beam energy possesses higher density that increases 

building process (Parthasarathy, Starly, Raman, & Christensen, 2010). 

This method also has the ability to improve the material’s mechanical 

properties and strength (Murr, 2015). Laser engineered net shaping 

method (LENS) is another type of AM that utilized powder material 

for building solid parts. Unlike the other method, LENS solidifies 

melted powder metal in a melted substrate (Cong & Ning, 2017). The 

process of melting the substrate and the powder metal is conducted by 

laser radiation as shown in Fig. 8.  
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Fig. 8: LENS schematic diagram (Cong & Ning, 2017; “LENS 450 
System,” n.d.) 

 

 

LENS has the flexibility of processing most type of powdered 

metal alloy and ceramic with high complexity and customized 

porosity (Mallik, Rao, & Kesava Rao, 2014; Niu et al., 2016).  

However, the final product is prone to surface deformation due to high 

solidification rate (Gu, Meiners, Wissenbach, & Poprawe, 2012). Due 

to this problem, a study on heat treatment was conducted and was 

proven to be able to enhance the hardness of the product (Cong & 

Ning, 2017).    

 

CONCLUSION 

 

Although conventional manufacturing technology had been 

enhanced by using computer-aided software, AM technology seems to 

catch up in manufacturing medical implants. Material removing 

methods have become less preferred due to the material waste and 

longer operation time. Furthermore, reversed engineered implants that 

focus on the geometrical accuracy are more suitable to be 

manufactured by AM. Integrated approach that was developed has 

able to increase the processing duration and decrease material waste as 
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well. Another obvious advantage of AM is its ability to customize the 

micro structure of the product according to the application. The 

porosity and strength of the implant could also be further enhanced by 

the advanced manufacturing method such as electro-discharge 

machining (Abdu Aliyu, Mohd Rahani, Abdul Rani, & Musa, 2015). 

Although the overall operation and AM equipment are still costly, this 

aspect is mainly subjective because it is closely related to the material 

selection and production volume (Campbell, Bourell, & Gibson, 

2012). Besides, there is an obvious trend of equipment price 

decrement over the past decades (Emelogu, Marufuzzaman, 

Thompson, Shamsaei, & Bian, 2016). This has proven that the 

advanced technology will be more affordable in the future and despite 

this limitation, advanced manufacturing is still gaining recognition 

from the public. The equipment has become portable and more user-

friendly as well. Soon, the medical officers should be able to operate 

the equipment from the hospital with minimum supervision from 

technical experts. 
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