
 Fathillah et al. / International Medical Device and Technology Conference 2017  

236 

                                                                           
eISBN 978-967-0194-93-6 FBME 

 

 
 
Complexity Analysis on EEG Signal via Lempel-Ziv and Approximate 
Entropy: Effect of Multiresolution Analysis 
Mohd Syakir b Fathillah a,*, Rosmina Jaafar a, Kalaivani Chellappan a, Rabani Remli b, Wan Asyraf 
Wan Zaidi b  
 
a  

Jabatan Kejuruteraan Elektrik, Elektronik & Sistem, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia 
b  

Neurology Unit, Department of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia 
 
* Corresponding author: syakirfathillah92@gmail.com 
 

 
ABSTRACT 

 
Lempel Ziv has been applied in biomedical signal interpretation for measuring depth of anaesthesia, characterization of brain function and study 

of emotional and cognitive processing. Despite Lempel Ziv (LZ) popularity as a technique to measure complexity, the understanding of the LZ 

application on biomedical signal has not been fully addressed.  This paper is focusing on comparison study between LZ and Approximate 

Entropy (ApEn) and how multiresolution analysis (MRA) affects both techniques.  We assess the performance of both techniques in time domain 

first using ANOVA to investigate the ability of both techniques in distinguishing between normal, interictal and ictal seizure dataset.  MRA then 

is implemented and a similar test is conducted. Our findings show that ApEn is more sensitive to the presence of epileptic discharge compare to 

LZ. MRA has positive effect on ApEn where it provides more detail analysis based on sub-bands.  The effect of MRA provides better 

enhancement for ApEn compare to LZ in terms of differentiating between normal, interictal and ictal.  

_______________________________________________________________________________________ 

 
INTRODUCTION 
 

Biomedical signal is a continuous, time-varying record that 

conveys information regarding an internal functioning of a biomedical 

system. A biomedical signal usually acquired by two ways, whether 

by a transducer and is converted to a voltage or current for further 

analysis or by recording directly using electrode (Robert B . Northrop 

2010)  

Most of the biomedical signals are non-stationary including 

electroencephalogram (EEG) signal. The condition producing these 

signal vary over time, making EEG signal to exhibit nonstationary, 

nonlinear, stochastic, dynamic and also complex behaviour 

(Klonowski 2009). These properties have been used by the previous 

researcher to investigate in EEG study related to characterization of 

brain function (Grassberger et al. 1991), study of emotional (Li et al. 

2016), cognitive processing (Natarajan et al. 2004), measurement of 

depth of anaesthesia (Zhang et al. 2001), and seizure detection (Ocak 

2009). 

To evaluate the complexity of a time series, Lempel and Ziv have 

proposed a method related to the number patterns and the rate of their 

occurrence in a sequence (Lempel & Ziv 1976). From data 

compression algorithm, LZ has been adopted in many biomedical data 

such as schizophrenia (Fernández et al. 2013), mechanomyography 

(Sarlabous et al. 2013), Alzheimer (Abásolo et al. 2006), monitoring 

the brain state in anaesthesia (Bai, Liang, Li, et al. 2015)  and seizure 

detection (Bai, Liang & Li 2015). Currently, there has been extensive 

use of LZ in EEG analysis because it has several advantages (Ibáñez-

Molina et al. 2015): (a) can be applied to any time series signal (b) 

can be applied to short time signal (c) lower computational cost. 

Despite of its popularity as a technique to measure complexity, the 

understanding of the LZ application on biomedical signal has not been 

fully addressed. Jing Hu et al. (Hu et al. 2006) studies the effect of 

finite size data on LZ complexity and drawn out conclusion that LZ is 

almost independent with sequence length. The normalized LZ 

complexity is able to outperform correlation entropy in detecting 

epileptic seizure. Aboy et al. (Aboy et al. 2006) investigated 

interpretability of LZ complexity in concepts such as frequency, 

frequency variability of the harmonics and signal bandwidth. 

In this paper, we present a comparison study on LZ with another 

commonly used complexity measurement technique, the Approximate 

Entropy (ApEn) through the detection of seizure in EEG. We also test 

the effect of multiresolution analysis (MRA) on both techniques. 

  

MATERIALS AND METHOD 
 

EEG Data 
This study utilizes four sets of online public EEG data (A, B, and 

C) which were acquired from the Department of Epileptology, 

University of Bonn database (Andrzejak et al. 2012). Each set 

contains 100 single channels that were recorded using 128-channel 

amplifier system. The duration of each data is 23.6 seconds, sampled 

at 173.61Hz and was band-pass filtered from 0.53 Hz to 40 Hz. Set A 

consists of 5 healthy subjects where the subjects were awake and 

relaxed with eye opened. For set B, it contains interictal epileptic 

discharge (interictal seizure) and was recorded within epileptogenic 

region respectively. Set C contained ictal epileptic discharge (ictal 

seizure) activities. The interictal epileptic discharge has the same 

characteristic as ictal, only in shorter duration and no symptom shown 

by the patient (Staley & Dudek 2006). The electrodes placement is 

according to the international 10-20 system and the summarization of 

data sets detail are as in Table 1.   

 
Table 1 Summary of clinical data. 
 

 Set 1 (A) Set 2 (B) Set 3 (C) 

ORIGINAL PAPER 
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Subject 
Condition 

Healthy 
subject with 
eyes open 

Interictal 
epileptic 
discharge 

Ictal epileptic 
discharge 

Electrode 
placement 

International 
10-20 systems 

Within 
epileptogenic 
zone 

Within 
epileptogenic 
zone 

 

Seizure data is utilized in this study to demonstrate the change of 

regularity during normal, interictal and seizure period. During the 

release of epileptic discharge, EEG signal appear regular and 

repetitive (Ocak 2009) allowing LZ and ApEn to measure it 

complexity. 

 

Discrete Wavelet Transform (MultiResolution Analysis) 
Discrete wavelet transform is adopted to utilize multiresolution 

analysis (MRA). The wavelet transform is mathematical techniques 

where it can convert the signal into a scaled and shifted version of the 

mother wavelet and express it in terms of frequency and time. The 

main benefit of the wavelet transformation is to decompose a signal 

into a sub-band frequency which is MRA and can be described by the 

equation (1): 

 ( )  ∑  
 
 ⁄   ( ) ( 
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where ϕ(t) is a scaling function,   (t) is a basis function and j is 

the scale index. The signal undergoes high pass filter and low pass 

filter that will produce an approximation of f(t) and detail of f(t) 

respectively which will be presented in finer scale. The types of 

wavelets play important role in the wavelet transform. In this study, 

we adopted Daubechies 4 (db4) as mother wavelet because its 

smoothing feature is suitable in detecting EEG changes (Omerhodzic 

et al. 2010). Decomposition level is set to six to correlate it with a 

classification of wave frequencies as shown in Table II. 

 
Table 2 Classification of sub-band according to type of wave. 
 

Coefficient 
Frequency 
Band (Hz) 

Type of wave 
Level of 

Decomposition 

D1 43.40-86.81 Noise 1 
D2 21.70-43.40 Beta-Gamma 2 
D3 10.85-21.70 Alpha-Beta 3 
D4 5.43-10.85 Theta-Alpha 4 
D5 2.71-5.43 Delta-Theta 5 

A5 0.5-2.71 Delta 5 

 

Lempel-Ziv Complexity 
To compute LZ complexity, the signal S(n) must be transformed 

into a symbolic sequence first. Typically, converting the signal into a 

binary sequence is adequate for biomedical signal analysis (Aboy et 

al. 2006). This can be done by comparing threshold Td with the signal 

data, S as follows: 

 

   ( )  ( )    ( )   (2) 

where 

 ( )  {
      ( )    
            

   (3) 

 

Commonly the median is used as the threshold due to its robustness to 

outliers (Aboy et al. 2006). The signal S is scanned from left to right 

and the complexity counter c(n) will increase each time new 

subsequence of consecutive character is come up.  The complexity 

measure can be obtained by following algorithm (Abásolo et al. 

2007): 

1) Let P be a signal which contain two subsequences, S and Q. Let 

SQ be the sequence of S and Q, while SQπ is derived from SQ 

after its last character deleted. Let v(SQπ) indicate the 

vocabulary of all different subsequences of SQπ. For started, 

value c(n)=1, S=s(1), Q=s(2) and SQπ=s(1). 

2) For generalization, S=s(1), s(2), …, s(r), Q=s(r+1) and 

SQπ=s(1), s(2), …, s(r). If Q fits in v(SQπ), then Q is a 

subsequence of SQπ which is not a new sequence. 

3) Renew Q to be s(r+1), s(r+1) and check if Q belongs to v(SQπ) 

or not. 

4) Step 3 is repeat until Q does not belongs to v(SQπ), which 

means Q is not a subsequence of v(SQπ). 

5) SQπ is a new sequence, so value of c(n) increase by one. 

6) S is renewed to be S=s(1), s(2), …, s(r+i) and Q=s(r+i+1). 

7) Repeat procedure until Q is the last character. 

 

The complexity measure depends on number of different 

subsequences in P. To acquire complexity independent to sequence 

length, c(n) need to be normalized as follow (4): 

 

 ( )  
 ( )      

 
   (4) 

 

Approximate Entropy 
Approximate Entropy first was developed by Pincus to measure 

system complexity (Pincus 1991). In signal analysis, ApEn helped to 

measure the regularity and predictability of a signal. The value of 

ApEn can be determined by the following procedure. 

 

1) Let a data sequence containing n data points be Sn = {u(1), u(2), 

u(3),….,u(n)] 

2) Choose value of m and r where m = pattern length and r = 

criterion of similarity        for k=0,0.1,0.2,0.3,…,0.9. SD 

will be present as standard deviation of data Sn 

3) Let X be sequence of x(i) such that 

x(i)=[u(i),u(i+1),u(i+2),…,u(i+m-1)] where i=1,2,3,…,(n-m+1) 

4) Find the distance between vector x(i) and x(j) by using formula 

          [    ]        ( )   
 ( ) , if  [    ]    the pattern are 

likely similar 

5) Calculate   
  

           [    ]           

(     )
 and   

    

           [    ]           

(     )
 

6) Define   ( )  
∑    (  

 ( ))     
   

     
 and 
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∑    (  

 ( ))     
   

     
 

7) ApEn(m,r,n) is determined as follow:     (     )  
  ( )      ( ) 

Large ApEn value indicates the signal is unpredictable and 

irregular while a small ApEn value indicate higher regularity and 

repetitive pattern. To determine the ApEn, the (m) and (r) are set to 2 

and 0.2xSD respectively based on Srinivasan et. al (Srinivasan et al. 

2007) to obtain the highest percentage of efficiency.   

 

RESULTS AND DISCUSSION 

 
Signal Complexity without MRA 

Initially, we applied LZ and ApEn to three different set of EEG 

data, Set A, B and C in time domain. We analysed the significant level 

of complexity mean of difference group and the result is tabulated in 

Table 3 and Table 4 for LZ and ApEn, respectively. 

 
Table 3 Mean complexity of LZ with significant value between dataset. 
 

Dataset Mean±Std.Deviation Dataset sig. 

Set A 0.0695±0.0235 
Set B 0.389 
Set C 0.000* 

Set B 0.0656±0.0255 
Set A 0.389 
Set C 0.000* 

Set C 0.0233±0.0109 Set A 0.000* 
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Set B 0.000* 

 
 
Table 4 Mean complexity of ApEn with significant value between 
dataset. 
 

Dataset Mean±Std.Deviation Dataset sig. 

Set A 0.9971±0.1558 
Set B 0.000* 
Set C 0.000* 

Set B 0.6137±0.1961 
Set A 0.000* 
Set C 0.000* 

Set C 0.4926±0.1438 
Set A 0.000* 
Set B 0.000* 

 

Based on Table 3, Set A yields the highest mean complexity 

followed by Set B and Set C. The complexity decrease in EEG that 

contain epileptic discharge. The outcome of ANOVA test reveal that 

there is significant difference between Set C with set A and B but 

there is no significant difference between Set A and Set B (p-

value>0.01).  

On the other hand ApEn outcome (Table 4) is consistent with LZ 

where it exhibit decreasing trend from Set A followed by Set B and 

Set C. However, the ANOVA show positive outcome where there is 

significant difference among Set A, B and C (p-value<0.01). This test 

shows that ApEn is more sensitive in detecting the presence of 

epileptic discharge compare to LZ. Graph of mean complexity for LZ 

and ApEn can be observed in Fig 1(a) and Fig1(b), respectively. 

 

 
(a) 

 
(b) 

Fig.1 Mean complexity vs dataset for (a) LZ (b) ApEn 

 
Signal Complexity with MRA in Time-Frequency Domain 

Next, we apply DWT on signal to do multiresolution analysis. The 

signal is decomposed into sub-band. Complexity can be assessed in 

each sub-band. The average complexity of each sub-band is tabulated 

in Table 4 and Table 5 for LZ and ApEn, respectively.  

 

 
Table 4  Mean complexity of LZ using MRA with significant value 
between dataset. 
 

Dataset 
Sub-
band 

Mean±Std.Deviation Dataset sig. 

A 
cA5 0.2387±0.036058 

Set B 0.000* 
Set C 0.000* 

cD5 0.6643±0.0412 
Set B 0.051 
Set C 0.342 

cD4 1.1686±0.0613 
Set B 0.000* 
Set C 0.000* 

cD3 1.7630±0.0928 
Set B 0.000* 
Set C 0.000* 

cD2 2.1157±0.1511 
Set B 0.000* 
Set C 0.000* 

cD1 3.2088±0.1870 
Set B 0.006* 
Set C 0.882 

B 

cA5 0.2761±0.0477 
Set A 0.000* 
Set C 0.000* 

cD5 0.6470±0.0445 
Set A 0.051 
Set C 0.609 

cD4 1.1022±0.0587 
Set A 0.000* 
Set C 0.020 

cD3 1.6841±0.1032 
Set A 0.000* 
Set C 0.007* 

cD2 2.2672±0.0845 
Set A 0.000* 
Set C 0.000* 

cD1 3.2795±0.1416 
Set A 0.006* 
Set C 0.001* 

C 

cA5 0.3198±0.0490 
Set A 0.000* 

Set B 0.000* 

cD5 0.6540±0.0667 
Set A 0.342 

Set B 0.609 

cD4 1.0710±0.1130 
Set A 0.000* 

Set B 0.020 

cD3 1.626±0.1861 
Set A 0.000* 

Set B 0.007* 

cD2 1.9956±0.1875 
Set A 0.000* 

Set B 0.000* 

cD1 3.1979±0.1525 
Set A 0.882 

Set B 0.001* 

 
Table 5 Mean complexity of ApEn using MRA with significant value 
between dataset. 
 

Dataset 
Sub-
band 

Mean±Std.Deviation Dataset sig. 

A 

cA5 0.1619±0.022268 
Set B 0.000* 
Set C 0.000* 

cD5 0.4347±0.023383 
Set B 0.001* 
Set C 0.000* 

cD4 0.5939±0.01886 
Set B 0.000* 
Set C 0.005* 

cD3 0.8004±0.026509 
Set B 0.000* 
Set C 0.000* 

cD2 1.0029±0.050259 
Set B 0.003* 
Set C 0.000* 

cD1 1.5230±0.065739 
Set B 0.004* 
Set C 0.000* 

B 

cA5 0.1909±0.043464 
Set A 0.000* 
Set C 0.000* 

cD5 0.4079±0.073705 
Set A 0.001* 
Set C 0.000* 

cD4 0.5438±0.084005 
Set A 0.000* 
Set C 0.069 

cD3 0.7022±0.140353 
Set A 0.000* 
Set C 0.000* 

cD2 0.9121±0.203186 
Set A 0.003* 
Set C 0.000* 

cD1 1.4161±0.249503 
Set A 0.004* 
Set C 0.000* 

C 

cA5 0.2309±0.041916 
Set A 0.000* 
Set B 0.000* 

cD5 0.4719±0.045282 
Set A 0.000* 
Set B 0.000* 

cD4 0.5646±0.075406 
Set A 0.005* 
Set B 0.069 

cD3 0.6258±0.17937 
Set A 0.000* 
Set B 0.000* 

cD2 0.5978±0.263945 
Set A 0.000* 
Set B 0.000* 

cD1 0.7676±0.318454 
Set A 0.000* 
Set B 0.000* 
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Graph of mean complexity for LZ and ApEn can be observed in 

Fig 2(a) and Fig 2(b), respectively. The complexity of Set C is 

consistent between LZ and ApEn. This result supports the fact that 

epileptic discharge during seizure make EEG signal be more 

deterministic. However, we found out that LZ is less sensitive to the 

presence of epileptic discharge. This is due to its ability to 

discriminate the normal (Set A) and interictal seizure (Set B). This 

trait can be seen in analysis without MRA where there is no 

significant difference between Set A and Set B (p-value>0.01). In 

MRA analysis, particularly in sub-band cD2 and cD1, complexity of 

Set B is higher than Set A, which is contradicting to the fact that 

presence of epileptic discharge exhibit regular pattern. This result also 

contradicts with ApEn result. The sub-band cD5 in LZ show no 

significant difference among three datasets (p-value>0.01). However, 

ApEn show good performance in distinguishing all sub-bands with 

significant difference (p-value<0.01) except between Set B and Set C 

in sub-band cD4 (p-value<0.0619). This indicates that effect of MRA 

is able to provide better enhancement to differentiate between dataset 

for ApEn compare to LZ. 

A study was conducted to investigate the relationship of LZ 

complexity with frequency (Aboy et al. 2006). It is stated that LZ 

complexity increases as the frequency of a sinusoid increase. This 

concluded that the LZ complexity is independent with frequency 

content. However, an objection on this matter was expressed in 

(Balasubramanian et al. 2013). The author claims the fact that LZ 

complexity value increases only at low frequency (0.1 to 1 Hz) and 

hovers around a constant value at frequency 5 to 50 Hz. In our case, 

the effect of MRA proves that the LZ complexity is dependent with 

frequency. This can be seen by the increase of LZ value as sub-band 

increases even in the frequency higher than 5 Hz. Our finding 

correlates with (Aboy et al. 2006). 

 

 
(a) 

 
(b) 

 
Fig. 2 Mean complexity vs sub-band for (a) LZ (b) ApEn. 

 

CONCLUSION 

 

This study discussed the complexity analysis using LZ and ApEn. 

It is shown that the ApEn is more sensitive in detecting the presence 

of epileptic discharge compare to LZ. The MRA has a positive effect 

on ApEn, enabling more detail analysis and exhibit a clear trend to 

distinguish subject normal with interictal and ictal seizure. LZ on the 

other hand shows a random trend in complexity. We conclude MRA 

enhance ApEn better compare to LZ in terms of distinguishing 

between dataset. Further analysis is needed to demonstrate the 

performance of MRA and LZ combination especially as feature for 

seizure detection algorithm. 
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