Faculty: FACULTY OF ELECTRICAL ENGINEERING

Course: 3rd Year Electrical Laboratory

Course Code : SKEE 3732 Review : 3 Release Date : 2019 : 2025 Last Amendment

SKEE 3732 FACULTY OF ELECTRICAL ENGINEERING, UNIVERSITI TEKNOLOGI MALAYSIA, JOHOR BAHRU

BASIC COMMUNICATION LABORATORY

AMPLITUDE MODULATION (AM) PRE-LAB

Prepared by : HEAD OF BASIC Approved by : **HEAD OF COMMUNICATION**

> **COMMUNICATION LABORATORY**

Name : DR. NURUL ASHIKIN DAUD

: TS. DR. NIK NOORDINI NIK

ABD MALIK

Assisted by : PN. NORHIDAYU BASIR

: CIK NORAZAH ADZHAR

: PN. SYUKHIRIZA ALI

Signature &

Stamp

Signature &

Name

ENGINEERING DEPARTMENT

MU'AZZAH BINTI LATIFF

: ASSOC. PROF. IR. TS. DR. NURUL

Stamp

Date Date

4.0 PRE-LAB PROCEDURE

- Each group must complete the Pre-Lab experiment and discussion before attending the laboratory session. The completed answers (including flow graph and output signals) must be printed, brought to the lab and shown to the supervisor for verification at the beginning of the session.
- Students must save all flow graph files on a portable storage device (e.g., pendrive, external hard disk, or other suitable media) or cloud storage (gdrive) to ensure they can be readily accessed and executed during the lab session.

Experiment 4.1: Full AM Modulator/Transmitter

- (1) Install the windows-based GNUradio by referring to the link provided

 Link: https://drive.google.com/drive/u/1/folders/1N0SzktKDeLhIFOKOJ9C608CLeK9litxl
- (2) Start a new file in GNU Radio Companion (GRC). There will be two blocks in the workspace, i.e. **Options** block and **Variable** block. Open **Variable** block. Set the **Sampling Rate** in the **Variable** block to 200 kHz and variable name to **samp_rate**. In **Options** block, select **WX GUI**.
- (3) Create a signal source block by selecting **Signal Source** block. It should already be set to generate a cosine of frequency 1 kHz and amplitude 1. Change the frequency to 4kHz. Change the output type from "**Complex**" to "**Float**".
- (4) Connect the signal source block to a **Throttle** block. Then connect the **Throttle** output to a **WX GUI Scope Sink** and **WX GUI FFT Sink**. (Ensure all block types are set to **Float**, and the sampling rate is set to **samp_rate**).
- (5) Execute the file by hitting the gear icon in the GRC menu (taskbar), then click run. Observe the signal in both time domain (Scope Sink) and the frequency domain (FFT Sink).
- (6) Take the save screenshots of both outputs. Save the GRC flow graph as **PreLab_AM.grc** for use in the in-lab session.