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Abstract
This document the steps for implementing a serial adder in Intel Quartus using custom modules as building
blocks.
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1. Overview
A digital system is first defined with the specification of
the top level component (entity) and the algorithm to be
performed. From the specifications, the appropriate port
interface is defined.
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Figure 1. Serial Adder entity.

Inputs
• A: First n-bit Operand (Addend)
• B: Second n-bit Operand (Augend)
• st: Start signal which initiates the addition operation
• rst: Reset signal which puts the controller into the

initial state

Outputs
• S: The (n+1)-bit sum with carry (S = A+B)
• done: Active when the operation is complete

The algorithm is as follows:

Load A, Load B
c = 0, k = 0
while(k < n)

{c,S[k]} = A[k] + B[k] + c
k = k + 1

endwhile
done = 1

where n is the number of bits, c is the carry-in bit and k is
a counter variable which goes from 0 to n −1. Variables on

the left-hand side of the equations are normally need to be
stored in registers, hence, we infer that two n-bit registers A
and B, and a 1-bit carry register, c are needed. An (n +1)-bit
register S stores the sum. Since the addition is performed in
a serial fashion, a 1-bit adder is needed.

In practical designs, a down counter is preferred over
an up counter because detecting a final value of 0 is trivial.
Therefore, the pseudo-code is modified as follows:

Load A, Load B
c = 0, k = n
while (k > 0)
{c,S[n-k]} = A[n-k] + B[n-k] + c
k = k - 1

endwhile
done = 1

2. First-Cut Circuit
A serial adder consists of three n-bit shift registers, a full-
adder and a D flip-flop. Two parallel-in-serial-out (PISO)
shift registers holds the numbers (A and B) to be added,
while a serial-in-parallel-out (PISO) register holds the sum
(S). The full-adder performs the addition operation on the
values stored in the input shift registers and the carry flip-
flp in n clock cycles. A “first-cut” block diagram of a serial
adder is shown in Figure 2.

During each clock cycle, the current least significant bits
of the A and B registers, a0 and b0, with the current carry-in,
ci are summed by the full-adder. This produces sum bit
si and the carryout bit ci+1. On the next clock edge, si are
shifted into the result register S. At the same time, ci+1 is
stored into the DFF, to prepare for the next set of bits. The
sequence of the operation of a 4-bit serial adder is illustrated
in Table 1.

The value at the D flip-flop, ci , is the carry-out from the
whole addition. This bit can be combined with S to form
the 5-bit result.
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Figure 2. Overview of the serial adder circuit.

Table 1. Sequence of 4-bit serial adder operation performing
1011 + 0011 + 0 → 01110.

A B ci ci+1 si S
1011 0011 0 1 0 ----
-101 -001 1 1 1 0---
--10 --00 1 0 1 10--
---1 ---0 0 0 1 110-
---- ---- 0 - - 1110

The serial adder completes the addition process in 4
clock pulses. Shifting of the registers must be stopped after
completion. Otherwise, the computed result will be shifted
out and disappear.

3. Datapath Overview
Figure 3 shows the top level circuit diagram for a 4-bit serial
adder based in on the first-cut circuit. A 2-bit counter and
muxes at the DFF input are now part of the datapath. The
signals needed for controlling this DPU are:

• en_ld: Load the register/counter
• en_sh: Enable shift register operation
• en_ct: Enable counter operation. Later we found out

we do not need this signal.

Here’s how it operates:

• In idle state, the FSM waits for st (start) signal while
continuously loading A, B registers, clearing D and
loading counter K with 3.

• When start signal is received, repeat the following 4
times:

– Shift registers A, B , S and flip-flop D
– Decrement downcounter K

• After the bits have been shifted 4 times (signaled by
Zero signal from downcounter), stop shifting and out-
put the done signal. The 5-bit sum is now stable and
correct.

This multiplier does not use a counter to keep track of
the number of bits added so far. Instead, the progress of
the addition is kept track using the state diagram. Fig. 4
shows the state diagram where in each state the control unit
outputs a different control signal.
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Figure 4. FSM for serial adder.

Keep in mind that if we modify the adder to add more
bits, we must add states to the FSM because we do not have
a counter for keeping track of the number of bits added.

4. Building Blocks

This section shows the bottom-up implementation of data-
path components besides the full adder.

4.1 DFF with enable and clear
A basic DFF loads a new value every time a clock pulse ar-
rives. For this serial adder, a custom DFF circuit is required
because we want to stop loading when the operation is com-
pleted. The D flip-flop with enable and clear (DFFEC) shown
in Fig. 5 has two additional controls:

• load: to load a new value into the flip-flop
• clear: to clear the flip-flop
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Figure 5. D flip-flop with enable and clear.

In the serial adder datapath architecture, the ld signal
initializes all registers to prepare for adding a new set of
numbers. Connecting the ld signal to the clear input of the
DFF modules prepares the DFF adding the first bit pair.

4.2 DFF with enable and load
The D flip-flop with enable and load (DFFEL) functions the
same way as the DFFEC in Section 4.1 but it uses two 2:1
muxes.
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Figure 3. Serial adder datapath.
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Figure 6. D flip-flop with enable and clear.

4.3 SIPO Shift Register
The alternate version of the serial-in-parallel-out (SIPO)
shift register is built using 1-bit SIPO cell.
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Figure 7. SIPO shift register cell.

Four 1-bit cells are combined to build the 4-bit SIPO
needed for the project.
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Figure 8. 4-bit SIPO shift register.

4.4 PISO Shift Register
The parallel-in-serial-output (PISO) registers are built using
1-bit PISO cells.
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Figure 9. SIPO shift register cell.

Four 1-bit cells are combined to build the 4-bit PISO
needed for the project.
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Figure 10. 4-bit PISO shift register.

5. Datapath Unit
The datapath unit is almost the same as the standard version
except for the missing counter. See Fig. 11.
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Figure 11. Serial adder alternate dapath unit.
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The simulation waveform for the datapath unit is shown
in Fig. 12.
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Figure 12. Simulation of dapath unit.

6. Control Unit

The controller implements the FSM in Fig. 4. The control
unit is implemented using the almost-one-hot state assign-
ment. We get the following next state equations:

S0 = S0 ·S1 ·S2 ·S3 ·S4 ·S5+S0 · st +S5 · st

S1 = S0 · st

S2 = S1

S3 = S2

S4 = S3

S5 = S4+S5 · st

The output equations are read directly from the state
diagram:

en_l d = S0

en_sh = S1+S2+S3+S4

done = S5

The controller unit produced from these equations is
shown in Fig. 13.

The entity level circuit is shown in Fig. 14. The simula-
tion of the whole serial adder is shown in Fig. 15.
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Figure 13. Control unit.
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Figure 15. Simulation of serial adder for 8 + 15.
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