
Application Note AN10, Digital Electronics Laboratory, 2019

Serial Adder with Custom Modules
Muhammad Mun’im Ahmad Zabidi

Abstract
This document the steps for implementing a serial adder in Intel Quartus using custom modules as building
blocks.

1Department of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering
*Corresponding author: munim@utm.my

1. Overview
A digital system is first defined with the specification of
the top level component (entity) and the algorithm to be
performed. From the specifications, the appropriate port
interface is defined.

Clock

Valid

Reset

Go

A

B
S

 

Figure 1. Serial Adder entity.

Inputs
• A: First n-bit Operand (Addend)
• B: Second n-bit Operand (Augend)
• st: Start signal which initiates the addition operation
• rst: Reset signal which puts the controller into the

initial state

Outputs
• S: The (n+1)-bit sum with carry (S = A+B)
• done: Active when the operation is complete

The algorithm is as follows:

Load A, Load B
c = 0, k = 0
while(k < n)

{c,S[k]} = A[k] + B[k] + c
k = k + 1

endwhile
done = 1

where n is the number of bits, c is the carry-in bit and k is
a counter variable which goes from 0 to n −1. Variables on

the left-hand side of the equations are normally need to be
stored in registers, hence, we infer that two n-bit registers A
and B, and a 1-bit carry register, c are needed. An (n +1)-bit
register S stores the sum. Since the addition is performed in
a serial fashion, a 1-bit adder is needed.

In practical designs, a down counter is preferred over
an up counter because detecting a final value of 0 is trivial.
Therefore, the pseudo-code is modified as follows:

Load A, Load B
c = 0, k = n
while (k > 0)
{c,S[n-k]} = A[n-k] + B[n-k] + c
k = k - 1

endwhile
done = 1

2. First-Cut Circuit
A serial adder consists of three n-bit shift registers, a full-
adder and a D flip-flop. Two parallel-in-serial-out (PISO)
shift registers holds the numbers (A and B) to be added,
while a serial-in-parallel-out (PISO) register holds the sum
(S). The full-adder performs the addition operation on the
values stored in the input shift registers and the carry flip-
flp in n clock cycles. A “first-cut” block diagram of a serial
adder is shown in Figure 2.

During each clock cycle, the current least significant bits
of the A and B registers, a0 and b0, with the current carry-in,
ci are summed by the full-adder. This produces sum bit
si and the carryout bit ci+1. On the next clock edge, si are
shifted into the result register S. At the same time, ci+1 is
stored into the DFF, to prepare for the next set of bits. The
sequence of the operation of a 4-bit serial adder is illustrated
in Table 1.

The value at the D flip-flop, ci , is the carry-out from the
whole addition. This bit can be combined with S to form
the 5-bit result.



Serial Adder with Custom Modules — 2/5

A

B

S

a

b

cin

s

cout

+

Figure 2. Overview of the serial adder circuit.

Table 1. Sequence of 4-bit serial adder operation performing
1011 + 0011 + 0 → 01110.

A B ci ci+1 si S
1011 0011 0 1 0 ----
-101 -001 1 1 1 0---
--10 --00 1 0 1 10--
---1 ---0 0 0 1 110-
---- ---- 0 - - 1110

The serial adder completes the addition process in 4
clock pulses. Shifting of the registers must be stopped after
completion. Otherwise, the computed result will be shifted
out and disappear.

3. Datapath Overview
Figure 3 shows the top level circuit diagram for a 4-bit serial
adder based in on the first-cut circuit. A 2-bit counter and
muxes at the DFF input are now part of the datapath. The
signals needed for controlling this DPU are:

• en_ld: Load the register/counter
• en_sh: Enable shift register operation
• en_ct: Enable counter operation. Later we found out

we do not need this signal.

Here’s how it operates:

• In idle state, the FSM waits for st (start) signal while
continuously loading A, B registers, clearing D and
loading counter K with 3.

• When start signal is received, repeat the following 4
times:

– Shift registers A, B , S and flip-flop D
– Decrement downcounter K

• After the bits have been shifted 4 times (signaled by
Zero signal from downcounter), stop shifting and out-
put the done signal. The 5-bit sum is now stable and
correct.

This multiplier does not use a counter to keep track of
the number of bits added so far. Instead, the progress of
the addition is kept track using the state diagram. Fig. 4
shows the state diagram where in each state the control unit
outputs a different control signal.

s0
[en_ld]

s1
[en_sh]

s2
[en_sh]

s3
[en_sh]

s4
[en_sh]

s5
[done]

~st st

st

~st

rst

Figure 4. FSM for serial adder.

Keep in mind that if we modify the adder to add more
bits, we must add states to the FSM because we do not have
a counter for keeping track of the number of bits added.

4. Building Blocks

This section shows the bottom-up implementation of data-
path components besides the full adder.

4.1 DFF with enable and clear
A basic DFF loads a new value every time a clock pulse ar-
rives. For this serial adder, a custom DFF circuit is required
because we want to stop loading when the operation is com-
pleted. The D flip-flop with enable and clear (DFFEC) shown
in Fig. 5 has two additional controls:

• load: to load a new value into the flip-flop
• clear: to clear the flip-flop

VCC
shift INPUT

VCC
sin INPUT

VCC
clock INPUT

MULTIPLEXER

S
B
A

Y

21mux

inst2

VCC
clear INPUT CLRN

D
PRN

Q

DFF

inst

doutOUTPUT

NOT

inst5

BAND2

inst4

Figure 5. D flip-flop with enable and clear.

In the serial adder datapath architecture, the ld signal
initializes all registers to prepare for adding a new set of
numbers. Connecting the ld signal to the clear input of the
DFF modules prepares the DFF adding the first bit pair.

4.2 DFF with enable and load
The D flip-flop with enable and load (DFFEL) functions the
same way as the DFFEC in Section 4.1 but it uses two 2:1
muxes.

© 2019 Universiti Teknologi Malaysia



Serial Adder with Custom Modules — 3/5

1

Shift register

ld en_sh

Downcounter

zero 

Full
adder

Shift register

D
0

1
Q

a0

b0

ci

s

co

Go 

A

S

Valid

CU

DU

ld en_sh

en_sh

en_sh

ld

en_ct

RSI

Ld Sh

Sh

Ld Cnt

ld en_sh

Shift register

B
ld en_sh

Ld Sh ld

C4

A

B

S

D

K

1

0
0

1

Figure 3. Serial adder datapath.

VCC
clock INPUT

VCC
shift INPUT

VCC
sin INPUT

VCC
clear INPUT

doutOUTPUT

CLRN

D
PRN

Q

DFF

inst

MULTIPLEXER

S
B
A

Y

21mux

inst1MULTIPLEXER

S
B
A

Y

21mux

inst2

GND

Figure 6. D flip-flop with enable and clear.

4.3 SIPO Shift Register
The alternate version of the serial-in-parallel-out (SIPO)
shift register is built using 1-bit SIPO cell.

VCC
clock INPUT

VCC
shift INPUT

VCC
sin INPUT

qOUTPUT

CLRN

D
PRN

Q

DFF

inst

MULTIPLEXER

S
B
A

Y

21mux

inst4

Figure 7. SIPO shift register cell.

Four 1-bit cells are combined to build the 4-bit SIPO
needed for the project.

d[0]

d[3] d[2] d[1]

VCC
clock INPUT

VCC
sin INPUT

d[3..0]OUTPUT

sin
shift
clock

q

sipocell

inst

sin
shift
clock

q

sipocell

inst1

sin
shift
clock

q

sipocell

inst2

sin
shift
clock

q

sipocell

inst3

VCC
shift INPUT

Figure 8. 4-bit SIPO shift register.

4.4 PISO Shift Register
The parallel-in-serial-output (PISO) registers are built using
1-bit PISO cells.

VCC
clock INPUT

VCC
load INPUT

VCC
shift INPUT

VCC
sin INPUT

VCC
din INPUT

qOUTPUT

CLRN

D
PRN

Q

DFF

inst

MULTIPLEXER

S
B
A

Y

21mux

inst3MULTIPLEXER

S
B
A

Y

21mux

inst4

Figure 9. SIPO shift register cell.

Four 1-bit cells are combined to build the 4-bit PISO
needed for the project.

d[3]

d[2] d[1] d[0]

VCC
shift INPUT

VCC
load INPUT

VCC
clock INPUT

VCC
d[3..0] INPUT

soutOUTPUT
din
sin
shift
load
clock

q

pisocell

inst9

din
sin
shift
load
clock

q

pisocell

inst10

din
sin
shift
load
clock

q

pisocell

inst11

din
sin
shift
load
clock

q

pisocell

inst12

GND

Figure 10. 4-bit PISO shift register.

5. Datapath Unit
The datapath unit is almost the same as the standard version
except for the missing counter. See Fig. 11.

en_sh

clock

en_sh

en_ld

clock

Sum[4]

Sum[3..0]

VCC
en_sh INPUT

VCC
en_ld INPUT

VCC
clock INPUT

VCC
B[3..0] INPUT

a
b
ci

s
co

fulladder

inst1

d[3..0]
shift
load
clock

sout

piso4

inst2

d[3..0]
shift
load
clock

sout

piso4

inst3

sin
shift
clear
clock

dout

dffel

inst4

Sum[4..0]OUTPUT

sin
shift
clock

d[3..0]

sipo4

inst

VCC
A[3..0] INPUT

Figure 11. Serial adder alternate dapath unit.

© 2019 Universiti Teknologi Malaysia



Serial Adder with Custom Modules — 4/5

The simulation waveform for the datapath unit is shown
in Fig. 12.

Clk

Ld

Sh

A

B

Sum

1001

0001

00000 10000 01000 00100 01010

Figure 12. Simulation of dapath unit.

6. Control Unit

The controller implements the FSM in Fig. 4. The control
unit is implemented using the almost-one-hot state assign-
ment. We get the following next state equations:

S0 = S0 ·S1 ·S2 ·S3 ·S4 ·S5+S0 · st +S5 · st

S1 = S0 · st

S2 = S1

S3 = S2

S4 = S3

S5 = S4+S5 · st

The output equations are read directly from the state
diagram:

en_l d = S0

en_sh = S1+S2+S3+S4

done = S5

The controller unit produced from these equations is
shown in Fig. 13.

The entity level circuit is shown in Fig. 14. The simula-
tion of the whole serial adder is shown in Fig. 15.

state0

state0

state2

state1

state3

state5

state4

state5

~st

state0

st

state1

~st

~st

state4

state5

st

state2

state3

state0OUTPUT

state1OUTPUT

state2OUTPUT

CLRN

D
PRN

Q

DFF

inst

CLRN

D
PRN

Q

DFF

inst3

AND2

inst7
AND2

inst8

AND2

inst9

CLRN

D
PRN

Q

DFF

inst10

NOR6

inst15
OR3

inst16

VCC
st INPUT

NOT

inst6

LdOUTPUT

state3OUTPUT

state4OUTPUT

state5OUTPUT

ShOUTPUT

DoneOUTPUTCLRN

D
PRN

Q

DFF

inst5

OR2

inst4

AND2

inst12

CLRN

D
PRN

Q

DFF

inst13

CLRN

D
PRN

Q

DFF

inst14

OR4

inst11

VCC
Clk INPUT

Figure 13. Control unit.

State[0]

State[1]

State[2]

State[3]

State[4]

State[5]

VCC
clock INPUT

VCC
A[3..0] INPUT

VCC
B[3..0] INPUT

doneOUTPUTst
Clk

Ld

state0

Sh

state1
state2
state3
state4
state5

Done

cu

inst1

A[3..0]
B[3..0]

Sh
Ld

Clk

Sum[4..0]

du

inst

Sum[4..0]OUTPUT

state[5..0]OUTPUT
VCC

st INPUT

Figure 14. Serial adder top level entity.

clock

A

B

st

Sum

done

state

9

8

0 8 4 2 17

000000000001000010000100001000010000 100000

Figure 15. Simulation of serial adder for 8 + 15.

© 2019 Universiti Teknologi Malaysia



Serial Adder with Custom Modules — 5/5

References
[1] Designing State Machines for FPGAs. Application Note

130. Actel Corporation. Sept. 1997. URL: https://www.
microsemi.com/document-portal/doc_view/130043-

state-machine-an.

[2] Steve Golson. “One-hot state machine design for FP-
GAs”. In: Proc. 3rd Annual PLD Design Conference &
Exhibit. Vol. 1. 3. 1993.

[3] David A Huffman. “The synthesis of sequential switch-
ing circuits”. In: Journal of the Franklin Institute 257.3
(1954).

[4] Munim Zabidi, Izam Kamisian, and Ismahani Ismail.
The Art of Digital Design. 2019.

[5] Introduction to the Quartus® II Software. Version 10.
Altera. 2010. URL: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/

manual/intro_to_quartus2.pdf.

[6] Stephen Brown and Zvonko Vranesic. Fundamentals of
Digital Logic with Verilog Design. 3rd ed. McGraw-Hill
Education, 2013.

© 2019 Universiti Teknologi Malaysia

https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf

	Overview
	First-Cut Circuit
	Datapath Overview
	Building Blocks
	DFF with enable and clear
	DFF with enable and load
	SIPO Shift Register
	PISO Shift Register

	Datapath Unit
	Control Unit

