UTM

UNIVERSITI TEKNOLOGI MALAYSIA

Application Note ANO7, Digital Electronics Laboratory, 2020

Zebra Crossing Simulator on CPLD

Muhammad Mun’im Ahmad Zabidi, Musa Mohd Mokji, Izam Kamisian, Norhafizah Ramli

Abstract

*Corresponding author: munim@utm.my

A zebra crossing is a type of pedestrian crossing used in many places around the world. It is marked with black
and white stripes, resembling the coat of a zebra. Vehicles are supposed to stop so that people can walk across.
This document explores the state machine that regulate car traffic.

1 Department of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering

1. Scenario

Figure 1 shows a single lane road with a pedestrian crossing.
Road traffic and pedestrians are controlled by light signals.
Pedestrians may request to cross the road by pressing a walk
button B.

®

WALK

HALT

signals

countdown

@, timer

walk button

single traffic
lane

Figure 1. Conceptual view of zebra crossing.

The signals that control the lights are defined at the top
level entity in Figure 2. The control has a single input button.
Three output signals control the car facing lamps: green,
yellow and red. Three more outputs control the pedestrian
facing lamps, halt, walk, and a set of wires to the 7-segment
display.

The traffic lights are controlled by a finite state machine
(FSM), with state diagram in Figure 3. The controller has

— Green
Car
—> Yellow facing

Zebra —> Red
Button —> crossing —> Halt
controller —> Walk Pedestrian
facing

7/ 7-segment
codes

Figure 2. Conceptual view of zebra crossing controller.

Figure 3. Zebra crossing state diagram.

3 states based on the colors visible to the car driver. The
default state is Green.

State The car-facinglight is and the pedestrian
facing light is HALT. When someone wants to cross
the street, he/she presses the button B. This causes

the FSM to jump to state Yellow.

State The car-facing light is and the pedes-
trian facing light is still HALT. When 3 seconds is up,

the FSM jumps to state Red.

State Red The car-facing light is red and the pedestrian fac-
ing light is . The pedestrian crosses the street at
this time. A countdown timer is turned to inform the
pedestrian how many seconds are remaining. When
9 seconds is up, the FSM reverts to the green state.

The controller consists of 3 modules: FSM, timer and
BCD-to-7-segment decoder, as illustrated in Figure 4. The
timer can count 3 down to 0, or 9 down to 0. The output of
the timer is always available for debugging.

The signals that affect the state diagram are as follows:

B (Button) Pressed by pedestrian to cross the road. This
input is only checked in Green state.

T3 Triggers the timer to count down for 3 seconds. It is
activated while transiting from Green state to Yellow

Finite

Button —> state
: machine
TCT lTS ng
BCD-to-
' Timer —%—»| 7-segment
: Q[3..0] | decoder
. On CPLD

Figure 4. Main modules of zebra crossing controller.

state, i.e. this is Mealy type output. Activating T3 lets
the FSM stay in Yellow state for 3 seconds.

T9 Triggers the timer to count down for 9 seconds. It is
activated while transiting from Yellow state to Red
state, i.e. this is Mealy type output. Activating T3 lets
the FSM stay in Red state for 9 seconds.

TC (Terminal Count) : High when timer count reaches 0.

The FSM stays in Yellow or Red states as long as TC is
low.

2. Project Settings

1. Create a new project.

€4 New Project Wizard X

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

[c:/quartusprojects/zebra [

What is the name of this project?

[zebra [

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly match the entity
name in the design file.

[zebra =

Use Existing Project Settings...

<ok e | [coma vob

Figure 5. New project.

2. Place the project files in the appropriate folder.

3. Click| Finish]

Zebra Crossing Simulator on CPLD — 2/8

3. Timer Module
1. Choose File = New = Block Diagram/Schematic File.

2. Inthe Block Diagram editor, place a new lpm_counter

module.
2| symbol X
Libraries:
4 lpm_counter &
+{ parallel_add LPM COUNTE
01 gates —|scir
£ storage —sload
€1 others] ES‘E‘H
—{datal
v B ‘plrlrr:\t\:as o a—
@ - > —updown cout—
Name: ek en g _
et en 328
[Repeat-insert mode 85t L
[[] nsert symbol as block
Launch MegaWizard Plug-In
MegaWizard Plug-In Manager...

Figure 6. New project.

3. In Page 2c of the MegaWizard, choose Verilog. Then

click .

| MegaWizard Plug-In Manager [page 2c] X

Selected Megafunctions: yyhich type of output file do you want to create?

LPM_COUNTER () AHDL
() vHDL

(@) Verilog HDL

|C:jquartusprn]ectslzehraﬂpmfcnuntern

What name do you want for the output file?
X

Figure 7. Choose Verilog.

4. In Page 3 of the MegaWizard, select 4 bit output and

choose Down Only direction. Then click .

« MegaWizard Plug-In Manager [page 3 of 7] ?

"2 LPM_COUNTER

Optional Inputs >

> General2 >

Currently selected device family: | jax 7

How wide should the 'q’ output bus he*‘v bits
What should the counter direction be?
) up onl

() Create an 'updown'’ input port to allow me to do both (1 counts up; 0 counts down)

Match project/default

Figure 8. Select 4 bit output and choose Down Only direction.

© 2020 Universiti Teknologi Malaysia

5. In Page 4 of the MegaWizard, click Carry-out. Then

click .

% MegaWizard Plug-In Manager [page 4 of 7] ? x

"2 LPM_COUNTER

Parameter

Settings

General [Genera > Optional Inputs >

Which type of counter do you want?

@) Plain binary
(O Modulus, with a count medulus of 10

Do you want any optional additional ports?

0 cBrim

Figure 9. Click Carry-out.

[] clock Enable
[] count Enable

6. In Page 5 of the MegaWizard, add a Load input. Then

click . On the next page, click again.

%\ MegaWizard Plug-In Manager [page 5 of 7] ? x

"2 LPM_COUNTER

Parameter

Settings

General > General2 > Optional Inputs | >

Ipm_counterQ Do you want any optional inputs?
down counte
:;In{adﬂ 0 Synchronous inputs Asynchronous inputs
a3 0] o3 gyt
L L ciock cout |- [] Clear [] Clear
Load [Load
[[set [set
Settoalll's Settoall 1's
Setto |0 Setto 0

Figure 10. Click Load.

7. Place the resulting symbol anywhere convenient.

8. Place the first Ipm_constant module.

ﬁ Symbol *
Libraries:
=R ~
£ arithmetic
v B gates
£ busmux
¥ Ipm_and
£ Ipm_bustri
¢ Ipm_clshift
% lpm_constant ‘LPM CONSTA
. PO o
insT
Name:

[] Repeat-insert mode
[] mnsert symbol as block
Launch Megawizard Plug-In

MegaWizard Plug-In Manager...

Figure 11. Placing one out of two [pm_constant symbols.

Zebra Crossing Simulator on CPLD — 3/8

9. Set the size to 4 bits and constant value of 3. Click
[Finish .

X MegaWizard Plug-In Manager [page 10f 3] ? X
'# LPM_CONSTANT
T il Currently selected device family: | pax 11

7 Match project/default

How wide should the output be? bits

What is the constant value? Dec ~ b
Figure 12. Constant of 3

10. Place another Ipm_constant module. Set the size to
4 bits and constant value of 9. Click .

B FF g
d

% MegaWizard Plug-In Manager [page 1 of 3] ? X
<) LPM_CONSTANT
s 5 Currently selected device family: |yax 11

7 Match project/defauit

How wide should the output be? bits
Whatisthe constantvalue2 0 |lpec

Figure 13. Constant of 9

11. Add abusmux, an OR gate, 3 input ports and 2 output
ports like in Figure 14.

12. Set the timer circuit as top-level entity and compile it.

g timer.bdf |
Open

Remove File from Project

& Setas Top—LeSI Entity Ctrl+Shift+

Properties...

Figure 15. Set timer as top-level.

13. Create a waveform file and test the timer. Figure 16
shows the relation between T3/T9 triggers versus TC
and counter values.

Figure 16. Timer simulation.

© 2020 Universiti Teknologi Malaysia

Zebra Crossing Simulator on CPLD — 4/8

Parameter | Value

Ipm_constant0 WIDTH 4 Auto
3
inst3 ' BUSMUX Ipm_counter0
dataa[] sload down counter
result]] data[3..0
Ipm cons[anté datab] | (3.0] q[3..0] ;r\l TRUT —— ql3.0]
] - cout R .
instd instl sel clock I_Lu.l_.u_:> TC
nsts
9 D_LI\;}JCL.CU_,_" iy
T3 I 1 0h) T
e NS
clock | — n\\)gy

Figure 14. The timer module.

14. When no errors, convert the circuit to a symbol file.

Figure 17. Timer symbol.

4. FSM Module

1. Choose File w New = State Machine File.

2. In the State Machine Editor, click the State Machine
Wizard.

i B2
State Machine Wizard

3. Skip the General tab of the State Machine Wizard.
Nothing to change there.

4. InInputs tab of the State Machine Wizard, add TC and
B to the list of input ports. The order of ports does not
matter.

=2 State Machine Wizard

f General \f Inputs \f Outputs \f States \f Transitions \,.f' Actions \
Input Port Controlled Signal

clock Clock
reset Reset
TC Mo
B No

5. In Outputs tab of the State Machine Wizard, add T3,
T9, W, H, R, Y and G to the list of output ports. The
order of ports does not matter.

=2 State Machine Wizard

f General \f Inputs \‘,.f' Outputs \f States \,r" Transitions \f Actions \

Output Port Registered Output State
T3 No Current clock cycle
T9 No Current clock cycle
w No Current clock cycle
H No Current clock cycle
R No Current clock cycle
Y No Current clock cycle
G No Current clock cycle

6. In States tab of the State Machine Wizard, add green,
yellow and red to the list of states.

=2 State Machine Wizard

f General \f Inputs \f Outputs \f States \f Transitions \f Actions \

State Reset

green Yes
yellow No

red No

© 2020 Universiti Teknologi Malaysia

Zebra Crossing Simulator on CPLD — 5/8

7. In Transitions tab of the State Machine Wizard, add 10. Generate the HDL code.
the following list of state-to-state transitions. The
order does not matter. ==

* green goes to yellow when B is received
* yellow goes to red when TC is received
* red goes to green when TC is received

Figure 18. Generate HDL.

11. Set the state machine file as the top-level entity.

=@ State Machine Wizard @ controller.smf | =
4 controller.y Open
[General \/ Inputs \/ Outputs \/ States \/ Transitions \/” Actions \ E| zebrawf Remove File from Project
Source State Destination State Transition (In Verilog or VHDL 'OTHE &) timer.bdf
green yellow 8 g timerawf = Set as Top-Level Entity N Ctrl+Shift+]
yellow red TC - -
red green Tc Figure 19. Set controller as top level entity.

12. Compile the code.
8. In Actions tab of the State Machine Wizard, add the

following list of outputs. The order does not matter. 13. Simulate the controller.
* T3 is activated in state green if B is received o= ilslslslslslslslslslslslalslslslslsslslstslslslsd
. o s | |l
¢ T9is activated 1r1' state yellow if TC is recelvefi = T . — . .
* G and H are activated unconditionally during = AR
= v o o

state green 5 n 5 : : : : 2203550

* Y and H are activated unconditionally during I A A R BERELIR
state yellow ™ e e o ot S et e e e et

e R and W are activated unconditionally durin , . S
state red Y 8 Figure 20. Controller simulation input.

2% State Machine Wizard) Ikc‘w:‘ e e e L L e L
s (LT 1
f General \f Inputs \f Outputs \f States \f Transitions \,"' Actions \ ’ : _\——’_‘,—‘;ﬁ
Output Port Output Value In State Additional Conditions =y LT
5 R 1 1
T3 B green 8 W
8w 1 1
T9 TC yellow w | n
G 1 green -l A A
Y 1 yellows Figure 21. Controller simulation output.
R 1 red
H 1 green
H 1 yellows
w 1 red

9. Click when all information has been entered.

c—pogreend 0 | yellow red

© 2020 Universiti Teknologi Malaysia

14. When no errors in operation, save as a Symbol file.

Parameter [Value Type
green 0 Signed Integer
yellow 1 Signed Integer
red 2 Signed Integer
T |
— clock T3 —~
—{ reset TS —
— TC wWo—
— B H —
R{—
v

Figure 22. Controller symbol.

5. Integration & Simulation

1. In anew block diagram file, insert the timer and con-
troller symbols and connect according to Figure 23.

2. Simulate it. You should get Figure 24.

That concludes the construction of modules that can be
simulated.

6. CPLD

By adding two more modules, the zebra crossing circuit is
ready to programmed into a CPLD/FPGA.

The first module to add is the prescaler. This modules
slows the clock from 50 MHz to about 1 Hz. The second
module is the 7447 BCD-to-7-segment decoder. The output
of the decoder provides a convenient human interface but
the timing waveform output is not easy to visualize. It is
better not to simulate the 7447 module output.

1. Create a Verilog file and enter this code.

module prescaler (
reg[25:0] count;
always @ (posedge clkin) count <= count + 1;
assign clkout = count[25];

endmodule

2. Save as prescaler.v and compile it.
3. Save the prescaler as Symbol file.

4. In a new top-level (non-simulatable) file, Figure 25,
insert the prescaler and the 7447 BCD-to-segment
decoder modules. Just follow the diagram. Then com-
pile it.

5. Inthe Pin Assignment menu, set clock to Pin 64. Set
all other pins according to the components on your
breadboard.

input clkin, output clkout);

33V

7.

(1]

(2]

(3]

Zebra Crossing Simulator on CPLD — 6/8

Place a switch input, a 7-segment display, 5 color
LEDs, and 12 current limiting resistors on your bread-
board. Connect them to the CPLD according to Figure
26.

33V

CPLD

33V

o
_QL_4E:]____*‘_____.
Y
_fi__4[::}_____k‘______.
- —
—y!——{:::F————*‘——————

Figure 26. Zebra controller schematic.

Program the circuit into your CPLD. Run it!

References

Munim Zabidi, Izam Kamisian, and Ismahani Ismail.
The Art of Digital Design. 2019.

Introduction to the Quartus® II Software. Version 10.
Altera. 2010. URL: https://www.intel.com/content/
dam/www / programmable /us /en/pdfs/ literature/

manual/intro_to_quartus2.pdf.

My First FPGA Design Tutorial. Altera. July 2008. URL:

https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/tt/tt_my_first_fpga.pdf.

© 2020 Universiti Teknologi Malaysia

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/tt/tt_my_first_fpga.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/tt/tt_my_first_fpga.pdf

mm,_ clock
b reset
ir__|>_ B

an Green
ot

= Yellow

L Red
an Halt
o walk
= > a

Zebra Crossing Simulator on CPLD — 7/8

Parameter | Value Type

green [] Signed Integer
yelow 1 Signed Integer
red 2 Signed Integer

clock T3
resed T9
TC W
B H
R
Y H
- DUTPUT
= B

Simer T
T3 TC
i D ey
clock Q[3.0] -_—lLT.E-'J_D Q[3.0]

Figure 23. Top level zebra crossing circuit using full speed clock. The simulation is Figure 24.

L

@(15}{3}{2){!xaxg)(a)(?)(ﬁ)(—t}_}(:Lx;X2X1)(u)(15}<14}<13x

Figure 24. Zebra crossing simulation. Seven-segment display not added yet.

© 2020 Universiti Teknologi Malaysia

Zebra Crossing Simulator on CPLD — 8/8

Parameter[Value Type
green 0 Signed Integer
yellow 1 Signed Integer
red 2 Signed Integer
T
clock T3
reset T9
5 : TC w
i GND | B H QUTEUT —— Hall
. =
Y
G
inst3
i
T3 TC
i 9 g3..0]
clkin clkout clock Q[3..0] ®

the CPLD/FPGA.

© 2020 Universiti Teknologi Malaysia

	Scenario
	Project Settings
	Timer Module
	FSM Module
	Integration & Simulation
	CPLD

