
Application Note AN06, Digital Electronics Laboratory, 2020

Implementing One-Hot State Machines Using
Schematics
Muhammad Mun’im Ahmad Zabidi, Musa Mohd Mokji, Izam Kamisian, Norhafizah Ramli

Abstract
This articles introduces the reader to the concepts of one hot state machines and their implementation on
Quartus software.

1Department of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering
*Corresponding author: munim@utm.my

1. Introduction
Designing a finite state machine (FSM) is a common task
for a digital logic engineer. Usually the most important
decision to make when designing a state machine is what
state encoding to use. A poor choice of codes will result in
a state machine that uses too much logic, or is too slow, or
both.

In the one-hot encoding only one bit of the state vector
is asserted for any given state. All other state bits are zero.
Thus if there are n states then n state flops are required.
State decoding is simplified, since the state bits themselves
can be used directly to indicate whether the machine is in a
particular state. No additional logic is required.

The first discussion of one-hot state machines was given
by Huffman [1]. He analyzed asynchronous state machines
implemented with electromechanical relays, and introduced
a "one-relay-per-arrow" realization of his flow tables.

According to Golson [2], there are numerous advantages
to using the one-hot design methodology:

• Maps easily into register-rich FPGA architectures such
as Xilinx and Intel.

• One-hot state machines are typically faster. Speed
is independent of the number of states, and instead
depends only on the number of transitions into a par-
ticular state. A highly-encoded machine may slow
dramatically as more states are added.

• Don’t have to worry about finding an "optimal" state
encoding. This is particularly beneficial as the ma-
chine design is modified, for what is "optimal" for
one design may no longer be best if you add a few
states and change some others. One-hot is equally
"optimal" for all machines.

• One-hot machines are easy to design. Schematics can
be captured and HDL code can be written directly

from the state diagram without coding a state table.
• Modifications are straightforward. Adding and delet-

ing states, or changing excitation equations, can be
implemented easily without affecting the rest of the
machine.

• Easily synthesized from VHDL or Verilog.
• There is typically no area penalty over highly-encoded

machines.
• Critical paths are easy to find using static timing anal-

ysis.
• Easy to debug. Bogus state transitions are obvious,

and current state display is trivial.

2. Vending Machine Example

The vending machine in Figure 1 is a very common example
used to demonstrate the concept of finite state machines.
The vending machine releases a package of product (gum,
soda, etc) after it has received 15 cents in coins. The ma-
chine has a single coin slot that accepts nickels (5¢) and
dimes (10¢), one coin at a time. A mechanical sensor indi-
cates whether a dime or a nickel has been inserted into the
coin slot. The controller’s output causes a item of product
to be released down a chute to the customer. The machine
does not give change.

The Moore machine symbolic state diagram is shown
in Fig. 2. Each state represents how much money has been
deposited into the vending machine.

The meaning of each state is listed in Table 1. The FSM
starts at state S0 which means no money has been deposited.
If a nickel was inserted, the FSM goes to state S5. This is
shown by the arrow labeled with the variable N . If a dime
was inserted in state S0, the FSM goes to state S10, repre-
sented by the arrow label D. If nothing was received, the
FSM stays at state S0, represented by the arrow looping to



Implementing One-Hot State Machines Using Schematics — 2/4

Nickel Vending
machine
controller

Dime

Release

ChuteCoin

Figure 1. Vending machine abstract view.

S0

D'N'

1

N

D

D'N'

D'N'

N+D

D

Reset

N

S5

S10

S15
[R]

Figure 2. The state diagram for vending machine.

Table 1. State description.

Symbol Meaning

S0 No money received
S5 5¢ received
S10 10¢ received
S15 15¢ received

itself labeled D ′N ′.
From either state S5 or state S10, more coins can be in-

serted. A nickel causes the FSM to advance to the immedi-
ately succeeding state. A dime causes the FSM to advance
two states ahead. At state S10, either a dime or a nickel
advances the FSM to state S15, represented by the arrow
labeled N +D .

At state S15, the FSM outputs the Release signal which
causes the gum to be delivered. Then the FSM is restored to
the initial condition by an unconditional transition to state
S0. This action is represented by the arrow labeled 1.

An arrow labeled 1 in a multi-input state diagram has
a different meaning compared to the state diagrams from
the previous chapter. Previously, the state machines have
only a single input, therefore there is no need to label the
variables, and the arrows were labeled 0 or 1 according to
the value of the single input variable. This state machine
has two inputs, N and D . We must label each arrow with the
Boolean expression formed by the input variables, hence
the labels D ′N ′, D +N , D etc. An arrow labeled 1 on multi-
input FSMs simply means the TRUE Boolean condition or a
transition that always happens.

3. Deriving the Next State Equations

The vending machine controller can be implemented us-
ing one-hot state assignment by using the following state
assignment. Remember that in one-hot state assignment,
each state is represented by one flip-flop. The state the ma-
chine is in is indicated by the one and only flip-flop that is
hot. Thus the name one-hot.

Symbolic One-Hot Encoded

S0 = 0¢ 0001
S5 = 5¢ 0010

S10 = 10¢ 0100
S15 = 15¢ 1000

The next state equations are found by inspecting the
state diagram. For each state, each incoming arrow pro-
duces one term in the next state expression. Fig. 3 shows
how to derive the expression for S+

0 . In the state diagram,
two arrows come into state S0. This implies two ways to
make the S0 flip-flop hot. The first arrow comes from S0 it-
self labeled D ′N ′. This generates the term S0D ′N ′ where S0

is the originating state and D ′N ′ is the condition. The sec-
ond arrow comes from S15 unconditionally. This produces
the second term S15 ·1 or simply S15.

The full list of next state equations are:

S+
0 = S0D ′N ′+S15

S+
5 = S0N +S5D ′N ′

S+
10 = S0D +S5N +S10D ′N ′

S+
15 = S5D +S10N +S10D

© 2020 Universiti Teknologi Malaysia



Implementing One-Hot State Machines Using Schematics — 3/4

S0 = S0D'N' + S15
+

Next 
state

1st

incoming 
state

2nd

incoming 
state

Condition

S0

D'N'

1

D'N'

D

Reset

S5

S10

S15
[R]

D'N'

N+D

N

N

D

Figure 3. Deriving the next state equations for one-hot
controllers.

R

Clock Reset

S10

S15

S5

D Q
S0

N

S15

S0

N'
D'

S5

N'
D'

S10

N'
D'

S0

S0
+

S5
+

S10
+

S15
+

D Q

CL

D Q

CL

D Q

CL

PR

D
S0

N
S5

S10

D 

N
S10

D
S5

Figure 4. One-hot Moore-type implementation of vending
machine controller.

Getting the output equation is straightforward. The out-
put Release is only asserted when the FSM is in S15. The
Release signal is simply the output of the hot FF. Therefore,
the output equation is:

Release = S15

The controller implementation is shown in Fig. 4. The
Reset input is connected to the preset input of the first
flip-flop and to the clear inputs of the remaining flip-flops.
This forces the system to state S0 when Reset is asserted.
The controller solved using one-hot encoding looks more
complex than binary encoding, but the steps saved in de-
riving the next state logic reduce the chance for errors and
encourage experimentation.

4. Automatic Reset Handling
An FSM starts operating from an initial state, such as S0

in the case of the vending machine. The circuit in Fig. 4
has a manual reset input to put the FSM in the initial state.
Manual reset is not practical for a system which is expected
to run as soon as it is turned on.

4.1 Power-on-Reset (POR) Circuit
On circuits where the flip-flop values are unknown or ran-
dom on power up, the FSM can be forced to the initial state
by a reset pulse generated by an external power-on-reset
(POR) circuit.

Reset

Supply
voltage

Threshold voltage

VCC

Delay

Timer
starts

Timer
expires

When reset is deasserted, 
circuit operates normally

0V

VCC

Reset

VCC

Figure 5. POR holds the digital system in its reset state until
the supply voltage exceeds the POR threshold and a specific
delay period has elapsed.

Fig. 5 shows the timing diagram for a POR. When the
system is turned on, the supply voltage increases gradually
until it reaches the full value. The POR signal is low at this
time. On the way to reaching its full value, the voltage passes
a threshold value. A timer is started when the threshold
value is crossed. The POR signal is only released to high
when timer has expired. This arrangement causes all flip-
flops to be forced to the initial state for a predetermined
delay. When POR is high, the FSM can jump to any other
state.

Note that a human may reset the system by pressing the
reset button at any time.

© 2020 Universiti Teknologi Malaysia



Implementing One-Hot State Machines Using Schematics — 4/4

4.2 Inverted First Flip-Flop
On field programmable logic (CPLD and FPGA), all flip-flops
contain zeros when a chip is powered up. For a highly en-
coded FSM, the all-zero condition (or the none-hot state) is
usually the initial state and the POR circuit is unnecessary.

The none-hot state is not a valid operating state for one-
hot encoded FSMs. But it can be made valid! The trick is
to use negative logic for the first flip-flop. Simply add a
NOT gate at the input and another NOT gate at the output.
The following table lists the flip-flop values for our Moore
vending machine.

Symbolic Actual FF State Interpretation

S0 = 0¢ 0000 0001
S5 = 5¢ 0011 0010

S10 = 10¢ 0101 0100
S15 = 15¢ 1001 1000

Release

Clock

S10

S15

S5

D Q
S0

N

S15

S0

N'
D'

S5

N'
D'

S10

N'
D'

S0

S0
+

S5
+

S10
+

S15
+

D Q

D Q

D Q

D
S0

N
S5

S10

D 

N
S10

D
S5

Figure 6. Automatic reset handling of one-hot vending
machine controller with negative logic first-flip-flop.

4.3 The Ghost State
The none-hot state can be used to steer the FSM to the
first valid state automatically. A NOR gate connected to the
outputs of all flip-flops detects the all-zero condition. From
all-zero state, the FSM goes to main state diagram. Consider
the none-hot state to be a transient extra state (or ghost
state) in the state diagram. The FSM never returns to the
ghost state after the first clock cycle. The following table
lists the flip-flop values for our Moore vending machine.

Symbolic FF State

Init 0000
S0 = 0¢ 0001
S5 = 5¢ 0010

S10 = 10¢ 0100
S15 = 15¢ 1000

Release

Clock

 
S10

S15

S5

D Q S0

N

S15

S0

N'
D'

S5

N'
D'

S10

N'
D'

S0

S0
+

S5
+

S10
+

S15
+

D Q

D Q

D Q

D
S0

N
S5

S10

D 

N
S10

D
S5

S15

S10

S5

S0

Init

Figure 7. Automatic reset handling of one-hot vending
machine controller with none-hot state detector.

References
[1] David A Huffman. “The synthesis of sequential switch-

ing circuits”. In: Journal of the Franklin Institute 257.3
(1954).

[2] Steve Golson. “One-hot state machine design for FP-
GAs”. In: Proc. 3rd Annual PLD Design Conference &
Exhibit. Vol. 1. 3. 1993.

[3] Designing State Machines for FPGAs. Application Note
130. Actel Corporation. Sept. 1997. URL: https://www.
microsemi.com/document-portal/doc_view/130043-

state-machine-an.

[4] Munim Zabidi, Izam Kamisian, and Ismahani Ismail.
The Art of Digital Design. 2019.

[5] Introduction to the Quartus® II Software. Version 10.
Altera. 2010. URL: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/

manual/intro_to_quartus2.pdf.

© 2020 Universiti Teknologi Malaysia

https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf

	Introduction
	Vending Machine Example
	Deriving the Next State Equations
	Automatic Reset Handling
	Power-on-Reset (POR) Circuit
	Inverted First Flip-Flop
	The Ghost State

	Acknowledgments

