
Application Note AN05, Digital Electronics Laboratory, 2020

Finite State Machines with Quartus State Machine
Editor
Muhammad Mun’im Ahmad Zabidi, Musa Mohd Mokji, Izam Kamisian, Norhafizah Ramli

Abstract
This articles introduces the reader to the concepts of finite state machines and their rapid implementation using
Quartus state machine editor.

1Department of Electronic and Computer Engineering, School of Electrical Engineering, Faculty of Engineering
*Corresponding author: munim@utm.my

1. Introduction
Designing a finite state machine (FSM) is a common task
for a digital logic engineer. The two basic types of FSM
are Moore and Mealy, shown in Figure 1 and 2. Any FSM
contains three basic components: state register, next state
logic and output logic.

Next
state
logic

Output
logicPresent

state

Inputs

Clk

Moore
outputs

Next
state

State
register

Figure 1. Basic Moore type state machine.

Next
state
logic

Output
logicPresent

state

Inputs

Clk

Mealy
outputs

Next
state

State
register

Figure 2. Basic Mealy type state machine.

State Register
The state register is simply a few flip-flops which store the
present state. The present state is the value of the flip-flop
at any given time while the next state is the value after re-
ceiving a clock edge. A FSM with n flip-flops has 2n differ-
ent states. The number of states is limited or finite, thus
the name finite state machine. For example, an FSM with 2
flip-flops are limited to 4 states because they can only have
4 values: 00, 01, 10 and 11.

Next State Logic
The next state logic determines what the next state will be
when a clock pulse arrives. The decision is based on the
present state and input received from the outside world.

Output Logic
Output logic controls the outside world. Moore type FSM
determines the system output based only on the present
state (or the current value of flips-flops). Mealy type FSM de-
termines the output based on present state and the present
input. Due to this difference, Moore type FSM is easier to
design, while Mealy type FSM is usually more efficient. Both
types are widely used. Advanced FSMs may have both kinds
of outputs such as in Figure 3.

Next
state
logic

Mealy
output
logic

Moore
output
logic

Present
stateInputs

Clk

Mealy
outputs

Moore
outputs

Next
state

State
register

Figure 3. FSM with both Moore and Mealy outputs.

Finite state machines are modeled by state diagrams
which describe the state changes that happen as inputs are
received.

Finite State Machines with Quartus State Machine Editor — 2/10

2. Moore-type Vending Machine
The vending machine in Figure 4 is a very common example
used to demonstrate the concept of finite state machines.
The vending machine releases a package of product (gum,
soda, etc) after it has received 15 cents in coins [1].

The machine has a single coin slot that accepts nickels
(5¢) and dimes (10¢), one coin at a time. A mechanical sen-
sor indicates whether a dime or a nickel has been inserted
into the coin slot. The controller’s output causes a item of
product to be released down a chute to the customer. The
machine does not give change.

Nickel Vending
machine
controller

Dime

Release

ChuteCoin

Figure 4. Vending machine abstract view.

The Moore machine symbolic state diagram for the vend-
ing machine is shown in Fig. 5. Each state represents how
much money has been deposited into the vending machine.

S0

D'N'

1

N

D

D'N'

D'N'

N+D

D

Reset

N

S5

S10

S15
[R]

Figure 5. The state diagram for vending machine.

The FSM starts at initial state S0 which means no money
has been deposited. If a nickel (N)) was inserted, the FSM
goes to state S5. This is shown by the arrow labeled N . If a
dime (D) was inserted in state S0, the FSM goes to state S10,
represented by the arrow labeled D . If nothing was received,
the FSM stays at state S0, represented by the arrow looping
to itself labeled D ′N ′.

The state machine assumes N and D can never occur
at the same time. Although this assumption may simplify
manual design of the state machine, it may cause conflicts.

Table 1. State description.

Symbol Meaning

S0 No money received
S5 5¢ received
S10 10¢ received
S15 15¢ received

More on this later.
From either state S5 or state S10, more coins can be in-

serted. A nickel causes the FSM to advance to the immedi-
ately succeeding state. A dime causes the FSM to advance
two states ahead. At state S10, either a dime or a nickel
advances the FSM to state S15, represented by the arrow
labeled N +D .

At state S15, the FSM outputs the Release (R) signal which
causes the gum to be delivered. Then the FSM is restored to
the initial condition by an unconditional transition to state
S0. This unconditional action is represented by the arrow
labeled 1 (or unlabeled).

An enhanced vending machine state diagram is shown
in Figure 6. In this version, only arrows representing state
transitions are shown. An unlabeled arrow is assumed to be
an unconditional transition, e.g. S15 → S0. The enhanced
state diagram updates the labels for S0 → S5 and S5 → S10

transitions to resolve conflicts.

S0

D'N

D

N+D

D

Reset

D'N

S5

S10

S15
[R]

Figure 6. Enhanced state diagram for vending machine.

The next step in the design process is to enter the design
using Quartus State Machine Editor.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 3/10

3. Create a New Project
Launch the new project wizard in Quartus.

Figure 7. New project wizard Page 1.

After entering the folder name and project name, click�� ��Finish .
You can skip all the other pages. For this experiment,

the device type is not important.

4. Design Entry
1. From the top menu, choose File å New å State Machine

File.

Figure 8. New state machine.

2. From the toolbar, select the State Tool.

Figure 9. State tool.

3. When the icon changes, click four times to get four
states. These are placeholders. You can place them
any way, any where in the editor.

Figure 10. Four placeholder states.

You can skip Step 2 and 3. You can always add or delete
states during Step 8.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 4/10

4. From the toolbar, select the State Machine Wizard
tool. Confirm editing of an existing design then click�� ��OK .

Figure 11. Select the State Machine Wizard.

Figure 12. Confirm edit of current state machine.

5. In dialog box that appears, choose the General tab.
Make sure the bottom checkbox is checked. This al-
lows you to simplify the state diagram by not showing
arrows pointing back to the source state.

Figure 13. General tab of State Machine Wizard.

6. In the Inputs tab, click once on the <New> cell.

Figure 14. The Inputs tabs initial condition.

Add two new inputs, N and D .

Figure 15. Inputs N and D are added.

7. In the Outputs tab, click on the <New> cell and add
the output R.

Figure 16. The output R is added.

8. The States tab defines all states in the machine. Here,
rename all states to S0, S5, S10 and S15. The table
should appear as in Figure.

Figure 17. States tab of State Machine Wizard.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 5/10

9. The Transitions tab define state-to-state transitions.
Enter the transitions to get the table in Figure 18.

Figure 18. Transitions tab of State Machine Wizard.

The vending machine has only six transitions. Each row
in the table represents one transition with a source state,
destination state and the Verilog expression representing
the Boolean equation. In Verilog, AND, OR and NOT use the
operators &, | and ~, respectively.

From S0 in the original state diagram, the arrow labeled
N goes to S5 and the arrow labeled D goes to S10. In the
original design, we assume N and D are never active to-
gether. Quartus does not accept this assumption. The State
Machine Editor will give an error unless we label the tran-
sitions as D and N & ~D (Boolean N D ′). Alternatively, we
can label the transitions as N and D & ~N (Boolean DN ′).

The non-ambiguity rule for S0 is also applied to transi-
tions from state S5.

For the S10 to S15 transition, the expression N|D repre-
sents Boolean N +D .

The transition from S15 to S0 is unconditional. It is la-
beled “1” in the state diagram (or unlabeled). In the Transi-
tions table, leave the cell blank.

10. The Actions tab defines the outputs. In the original
state diagram, the output R is active in state S15. En-
ter the actions like in Figure 19. The value “1” in the
Output Value cell means the output is active uncondi-
tionally during S15. This is also called a Moore output.

(To create a Mealy output, enter the Boolean expres-
sion the Output Value cell.)

Figure 19. Actions tab defines state machine outputs.

11. All information have been entered. Click
�� ��OK ! We

should get Figure 20.

Figure 20. Quartus rearranged states.

12. Save the state machine file.

Figure 21. Save the file.

13. From the toolbar, click Generate HDL File. A dialog
box will appear. The choice would not make any dif-
ference, so choose Verilog HDL anyway.

Figure 22. Generate HDL.

Figure 23. Choose any language you like.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 6/10

13. After the HDL file is generated, add the file to the
project.

Figure 24. Add the Verilog file to current project.

14. Set the state machine file as the top-level entity. Note:
you can do this step any time after creating a new
state machine file but it must be before compiling the
HDL file.

Figure 25. Set vendingmoore.smf as top level entity.

15. Compile the generated HDL code.

Figure 26. Compilation report.

After a successful compilation, you are now ready to
simulate the vending machine.

5. Simulation
In order to simulate the design, we will enter the input sim-
ulation waveform.

1. Choose File å New å University Program VWF to

create a new file (see Figure 27) then click
�� ��OK .

Figure 27. Create new waveform file.

2. Simulation waveform editor window will appear such
shown in Figure 28.

Figure 28. Blank waveform.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 7/10

3. Choose Edit å Grid Size...

Figure 29. Set Grid size to 40 ns.

4. Choose Edit å Set End Time...

Figure 30. Set end time to 800 ns.

5. Go to View å Fit in Window to get the Vector Wave-
form at the workspace. We can also adjust the view
at our convenience through Zoom In and Zoom Out
tool.

6. Go to Edit å insert and click insert node or bus. A
pop-up dialog box will appear as shown in Figure 31.

Figure 31. Insert node dialog.

7. Click
�� ��Node Finder.. . A pop-up box will appear as

shown in Figure 32.

8. Follow these steps:

(a) Set the Filter to
�� ��Pins:all

(b) Click
�� ��List

(c) Click the
�� ��>> button

(d) Click
�� ��OK on the Node Finder window

Figure 32. Node finder dialog.

9. We will be brought back at the Insert Node or Bus box

as shown in Figure 33, click
�� ��OK .

Figure 33. Adding multiple nodes.

10. At this stage we will see five signals on the waveform
editor.

Figure 34. Waveform after inserting nodes.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 8/10

11. Click on the clock signal, then the Overwrite Clock
tool. Next, set the clock period to 40 ns.

Figure 35. Set the clock period to 40 ns.

12. For the remaining signals, set the values according to
Figure 36.

Figure 36. Simulation input waveform.

13. Choose File å Save as.... A pop-up box will appear as
shown in Figure 37, click

�� ��Save .

Figure 37. Save the vector waveform.

14. Click run functional simulation icon on the toolbar.
If the simulation is successful, a new window will ap-
pear showing the result of simulated waveforms.

Figure 38. Simulation output waveform.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 9/10

6. Mealy-type Vending Machine
The Mealy type vending machines solves the same task us-
ing only three states (Figure 39). This section of the appli-
cation note only points the differences. Unless otherwise
mentioned, use the same settings as the Moore machine.

S0

D'N

D N+D/R

Reset

D'N

D/R

S5

S10

Figure 39. The state diagram for vending machine.

1. From the top menu, choose File å New å State Machine
File.

2. In the State Machine Wizard, use the same settings in
General and Inputs tabs as the Moore type vending
machine.

3. In the Outputs tab, enter the R as output. Make sure
the output is registered.

Figure 40. Mealy output must be registered.

4. In the States tab, enter the following states.

Figure 41. Mealy states.

5. In the Transitions tab, enter the following states.

Figure 42. Mealy transitions.

6. In the Actions tab, enter the following states.

Figure 43. Mealy actions.

© 2020 Universiti Teknologi Malaysia

Finite State Machines with Quartus State Machine Editor — 10/10

7. Clicking
�� ��OK aftering entering all the information

above gives the following state diagram.

Figure 44. Mealy state diagram.

8. Save the file as vendingmealy.smf

9. Set vendingmealy.smf as Top Level Entity

10. General HDL.

11. Compile.

12. Simulate. You should get the same output as Figure
38.

Moore vs Mealy
This summary assumes the reader knows the difference
between Mealy and Moore outputs.

Moore outputs are locked to the state. When asserted,
Moore outputs are high as long as the FSM is in the partic-
ular state regardless of input changes. In Actions tab of the
State Machine Wizard, enter 1 in the Output Value column.
Refer Figure 19.

Mealy outputs asserted when certain conditions are met
in a state. In Actions tab of the State Machine Wizard, en-
ter the required Boolean expression in the Output Value
column. Refer Figure 43.

Mealy outputs are glitchy. To make the outputs easier to
analyze, set Mealy outputs as Registered in the Outputs tab
in the State Machine Wizard. If you do not set it as registered,
you must understand the effects of propagation delay, setup
time and hold time of flip-flops to predict when the outputs
are valid.

Figure 45. Unregistered Mealy outputs: the circles indicate
valid outputs. In Quartus, zoom in to inspect actual output
values during the rising edge of the clock.

References
[1] Randy H. Katz and Gaetano Borriello. Contemporary

Logic Design. 2nd ed. Pearson, 2004.

[2] Designing State Machines for FPGAs. Application Note
130. Actel Corporation. Sept. 1997. URL: https://www.
microsemi.com/document-portal/doc_view/130043-

state-machine-an.

[3] Munim Zabidi, Izam Kamisian, and Ismahani Ismail.
The Art of Digital Design. 2019.

[4] Introduction to the Quartus® II Software. Version 10.
Altera. 2010. URL: https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/

manual/intro_to_quartus2.pdf.

© 2020 Universiti Teknologi Malaysia

https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.microsemi.com/document-portal/doc_view/130043-state-machine-an
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/intro_to_quartus2.pdf

	Introduction
	Moore-type Vending Machine
	Create a New Project
	Design Entry
	Simulation
	Mealy-type Vending Machine

