FACULTY OF ELECTRICAL ENGINEERING

Course: ELECTRONIC DESIGN LABORATORY

Course Code: SKEE 2752

Review	: 8
Release Date	: March 2025
Last Amendment	: February 2025
Procedure Number	: PK-UTM-FKE-(O)-08

SKEE 2752

ELECTROTECHNICS LABORATORY

EXPERIMENT 1

SUPERPOSITION, THEVENIN AND NORTON THEOREMS

Prepared by	:	Approved by	: Department Director
Name	Assoc. Prof. Eur. Ing. Ir. Ts. Dr. Lau	Name	: Assoc. Prof. Ts. Dr. Shahrin Md
	Kwan Yiew		Ayob
	Assoc. Prof. Ir. Ts. Dr. Dalila Mat Said		
	Ir. Dr. Syed Norazizul Syed Nasir		
	Dr. Madihah Md Rasid		
	Dr. Nur Aqilah Mohamad		
	Dr. Siti Maherah Hussin		
	Dr. Rozana Alik		0
Signature	Assold: Prof. Eur. Ing. Ir. Ts. Dr. Lau Kwan Yiew Laboratory Academic Coordinator Electrotechnics Laboratory	Signature	· MMA
Stamp	Department of Electrical Power Engineering : Faculty of Electrical Engineering Universiti Teknologi Malaysia 81310 Johor Bahru, Johor	Stamp	PROF. MADYATE, OR SHOHRIN BIN MD AYOB Katua Jabatan Jabatan Kejuruteraan Elektrik Kuasa
Date	: 01 March 2025	Date	: 01 Marokii2025teraen Elektrik Universiti Teknologi Malaysia

©2025 Universiti Teknologi Malaysia – All Rights Reserved

FACULTY OF ELECTRICAL ENGINEERING Course: ELECTRONIC DESIGN LABORATORY Review : 8 Course Code: SKEE 2752 Release Date : March 2025 Course Code: SKEE 2752 Last Amendment : February 2025 Procedure Number : PK-UTM-FKE-(O)-08

I. PRELIMINARY EXERCISE (10 marks)

Important Note: Students are required to do this exercise BEFORE the laboratory session.

- i. Briefly describe Superposition, Thevenin and Norton theorems by using an example from your own circuit.
- ii. For the circuit in **Figure 1**, by using Superposition theorem, calculate current (IL), voltage (VL) and active power (PL) at variable resistances (RL) = 20Ω , 50Ω and 100Ω .
- iii. Repeat step (ii) by using Thevenin and Norton theorems.
- iv. Perform the circuit analysis using any simulation tools (LTSPICE, PSPICE, MATLAB, Multisim, etc.) to validate your results.
- v. Briefly discuss the importance of Superposition, Thevenin and Norton theorems in circuit analysis.

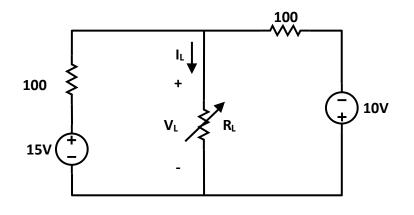


Figure 1

Important Note: Students are required to bring their laptops to VERIFY all simulations results.

Recommended Reference

Alexander & Sadiku, 'Fundamental of Electric Circuit 6th edition', McGraw Hill.

©2025 Universiti Teknologi Malaysia - All Rights Reserved

FACULTY OF ELECTRICAL ENGINEERING					
	Review	: 8			
Course: ELECTRONIC DESIGN LABORATORY	Release Date	: March 2025			
Course Code: SKEE 2752	Last Amendment	: February 2025			
	Procedure Number	: PK-UTM-FKE-(O)-08			

II. EXPERIMENT

'Superposition, Thevenin and Norton Theorems'

IMPORTANT: Students need to complete the PRELIMINARY EXERCISE before the laboratory session.

1. Aims:

To solve circuit analysis problems by using Superposition, Thevenin and Norton theorems.

2. Equipment provided:

DC power supply, ammeter, multimeter, variable resistor/rheostat

3. Instructions:

Precautions:

- Set the supply voltage and variable resistance to the correct experimental values before connecting it to the circuit.
- Make sure the multimeter or ammeter are connected at the correct terminal.
- Do not switch on the supply until all connections have been verified by the instructor.

Hints:

- To obtain the desired voltage, both the voltage knob and the current knob need to be adjusted until the GREEN LED (c.v.) illuminates to indicate the voltage supply.
- To obtain the desired current, both the voltage knob and the current knob need to be adjusted until the RED LED (c.c.) illuminates to indicate the current supply.
- i. Based on the circuit in Figure 1, setup an experiment to measure the current (IL), and voltage (VL) of the load for $R_L = 50 \Omega$ and 100Ω ;
 - a. based on the original circuit.
 - b. by using Superposition theorem.
 - c. by using Thevenin theorem.
 - d. by using Norton theorem.
- ii. Calculate the power absorbed by RL from the measurement in step 3(i).

FACULTY OF ELECTRICAL ENGINEERING					
Course: ELECTRONIC DESIGN LABORATORY	Review	: 8			
	Release Date	: March 2025			
Course Code: SKEE 2752	Last Amendment	: February 2025			
	Procedure Number	: PK-UTM-FKE-(O)-08			

- iii. Compare and comment on results of the three theorems against the original circuit in terms of voltage, current and power.
- iv. Compare the experimental results with the results from the preliminary exercises.
- v. Discuss the advantages and disadvantages of each theorem based on the experimental findings.