Course: ELECTRICAL ENGINEERING LABORATORY	Review	: 7
	Release Date	: October 2023
	Last Amendment	: September 2023
Course Code: SEEE 2742	Procedure Number	: PK-UTM-FKE-(0)-08

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

SEEE 2742 ELECTROTECHNIC LABORATORY

EXPERIMENT 3

$R-L$ AND $R-C$ SERIES TRANSIENT CIRCUITS

Prepared by	:	Approved by	: Department Director
Name	Assoc. Prof. Ir. Dr. Md Pauzi Abdullah	Name	: Assoc. Prof. Ts. Dr. Shahrin Md Ayob
	Ir. Dr. Syed Norazizul Syed Nasir		
	Ts. Dr. Mona Riza Mohd Esa		
	Dr. Mohd Rodhi Sahid		
	Dr. Norjulia Mohamad Nordin		
	Dr. Razman Ayop		kul
Signature	10	Signature	-
Stamp	- As $\$ 0$ oc Prof. Eur. Ing. Ir. Ts. Dr. Lau Kwan Yiew	Stamp	- ASSOC. PROF Ts. DR. SHAMRIN BIN MD AYOB
Stamp	- Laboratory Academic Coordinator	Stamp	Division of Eiectrical Power Engineenng Faculty of Electrical Engin eering Universiti Teknologi Malaysia
Date	: 04 September 2023	Date	

LAB SHEET - Experiment 3
FACULTY OF ELECTRICAL ENGINEERING

Course: | ELECTRICAL ENGINEERING |
| :--- |
| LABORATORY |

Course Code: SEEE 2742

Review : 7
Release Date : October 2023
Last Amendment : September 2023
Procedure Number : PK-UTM-FKE-(O)-08

I. PRELIMINARY EXERCISE (10 marks)

Important Note: Students are required to do this exercise BEFORE the laboratory session.

Part 1: RL Circuit (5 marks)

i. Explain time constant, $\boldsymbol{\tau}$ in circuit analysis.
ii. The switch in Figure 1 has been in position ' a ' for a long time. At $t=0$, the switch moves to ' b '.
a. Derive an expression of $V_{R}(t)=V_{S} \mathrm{e}^{-(t / \tau)}$
b. If $L=400 \mathrm{mH}$ and $V_{S}=5 \mathrm{~V}$,
i. Determine $V_{R}(t)$ at $t=\tau, 2 \tau, 3 \tau$ and 4τ for R values of $4 \mathrm{k} \Omega, 6 \mathrm{k} \Omega$ and $8 \mathrm{k} \Omega$.
ii. Sketch the response of $V_{R}(t)$ versus t.

Figure 1
iii. The switch in Figure 2 has been in position 'b' for a long time. At $t=0$, the switch moves to ' a '.
a. Derive an expression of $V_{R}(t)=V_{S}\left(1-\mathrm{e}^{-(t / \tau)}\right)$
b. If $L=400 \mathrm{mH}$ and $V_{S}=5 \mathrm{~V}$,
i. Determine $V_{R}(t)$ at $t=\tau, 2 \tau, 3 \tau$ and 4τ for R values of $4 \mathrm{k} \Omega, 6 \mathrm{k} \Omega$ and $8 \mathrm{k} \Omega$.
ii. Sketch the response of $V_{R}(t)$ versus t.

Figure 2

LAB SHEET - Experiment 3
FACULTY OF ELECTRICAL ENGINEERING

Course: | ELECTRICAL ENGINEERING |
| :--- |
| LABORATORY |

Course Code: SEEE 2742

Review : 7
Release Date : October 2023
Last Amendment : September 2023
Procedure Number : PK-UTM-FKE-(O)-08
iv. Perform the above preliminary exercise using any simulation tools (PSPICE, MATLAB, Multisim, LTSpice etc.) to validate your results (use a $500 \mathrm{~Hz}, 5 \mathrm{Vp}-\mathrm{p}$ with +2.5 V DC offset square wave signal for V_{s}).
v. Suggest experimental procedures to prove the result obtained from the exercise using a square wave signal generator instead of a switch.

Part 2: RC Circuit [5 marks]

i. Explain time constant, $\boldsymbol{\tau}$ in circuit analysis.
ii. The switch in Figure 3 has been in position 'a' for a long time. At $t=0$, the switch moves to 'b'.
a. Derive an expression of $V_{C}(t)=V_{S} \mathrm{e}^{-(t / \tau)}$
b. If $R=1 \mathrm{k} \Omega$ and $V_{S}=5 \mathrm{~V}$,
i. Determine $V_{C}(t)$ at $t=\tau, 2 \tau, 3 \tau$, and 4τ for C values of $0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$ and 0.15 $\mu \mathrm{F}$.
ii. Sketch the response of $V_{C}(t)$ versus t.

Figure 3
iii. The switch in Figure 4 has been in position ' b ' for a long time. At $t=0$, the switch moves to ' a '.
a. Derive an expression of $V_{C}(t)=V_{S}\left(1-\mathrm{e}^{-(t / \tau)}\right)$
b. If $R=1 \mathrm{k} \Omega$ and $V_{S}=5 \mathrm{~V}$,
i. Determine $V_{C}(t)$ at $t=\tau, 2 \tau, 3 \tau$, and 4τ for C values of $0.05 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$ and 0.15 $\mu \mathrm{F}$.
ii. Sketch the response of $V_{C}(t)$ versus t.

LAB SHEET - Experiment 3

FACULTY OF ELECTRICAL ENGINEERING		
Course:	ELECTRICAL ENGINEERING	Review
	Release Date	: October 2023
Course Code: SEEE 2742	Last Amendment	: September 2023

Figure 4
iv. Perform the above preliminary exercise using any simulation tools (PSPICE, MATLAB, Multisim, LTSpice etc.) to validate your results (use a $500 \mathrm{~Hz}, 5 \mathrm{Vp}-\mathrm{p}$ with +2.5 V DC offset square wave signal for V_{s}).
v. Suggest experimental procedures to prove the result obtained from the exercise using a square wave signal generator instead of a switch.

Important Note: Students are required to bring their laptop to VERIFY all simulation results. Students are required to bring a USB drive to capture output from the oscilloscope.

LAB SHEET - Experiment 3
FACULTY OF ELECTRICAL ENGINEERING

		Review
Course:	ELECTRICAL ENGINEERING	Release Date
LABORATORY	: October 2023	
Course Code: SEEE 2742	Last Amendment	: September 2023

II. EXPERIMENT

' R - L and $R-C$ Series Transient Circuits'

IMPORTANT: Students need to complete the PRELIMINARY EXERCISE before the laboratory session.

1. Aims:

i. To investigate the current time response in RL circuit due to changes of resistance.
ii. To investigate the voltage time response in RC circuit due to changes of capacitance.

2. Equipment:

Signal generator, Oscilloscope, Decade inductance (L), Decade resistance (R) and Decade capacitance/condenser (C)

3. Instructions:

Precaution:

Ensure that the 'earth' connections of the oscilloscope probe are at the same earth point.
Failure to observe this will damage the oscilloscope.

i. Part 1: RL Circuit

Based on item (v) in the preliminary exercise (Part 1), perform the RL circuit experiment. Record/draw the results in appropriate table/graph. Find the relationship between the time constant and the voltage response. Compare and discuss the results with preliminary exercise.

ii. Part 2: RC Circuit

Based on item (v) in the preliminary exercise (Part 2), perform the RC circuit experiment. Record/draw the results in appropriate table/graph. Find the relationship between the time constant and the voltage response. Compare and discuss the results with preliminary exercise.

