FACULTY OF ELECTRICAL ENGINEERING

Course: ELECTRICAL ENGINEERING LABORATORY

Course Code: SEEE 2742

 Review
 : 7

 Release Date
 : October 2023

 Last Amendment
 : September 2023

 Procedure Number
 : PK-UTM-FKE-(O)-08

UNIVERSITI TEKNOLOGI MALAYSIA

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MALAYSIA

SEEE 2742 Electrotechnic laboratory

EXPERIMENT 3

R-L AND *R-C* SERIES TRANSIENT CIRCUITS

Prepared by	:	Approved by	: Department Director
Name	Assoc. Prof. Ir. Dr. Md Pauzi	Name	: Assoc. Prof. Ts. Dr. Shahrin Md
	Abdullah		Ayob
	Ir. Dr. Syed Norazizul Syed Nasir		
	Ts. Dr. Mona Riza Mohd Esa		
	Dr. Mohd Rodhi Sahid		
	Dr. Norjulia Mohamad Nordin		
	Dr. Razman Ayop		
Signature Stamp	: Associ Prof. Eur. Ing. Ir. Ts. Dr. Lau Kwan Yiew Laboratory Academic Coordinator	Signature Stamp	ASSOC, PROF Ts. DR. SHAHRIN BIN MD AYOB Director Division of Electrical Power Engineering Faculty of Electrical Engineering
Date	: 04 September 2023	Date	: 04 October 2023

FACULTY OF ELECTRICAL ENGINEERING

I. PRELIMINARY EXERCISE (10 marks)

Course Code: SEEE 2742

Important Note: Students are required to do this exercise BEFORE the laboratory session.

Part 1: RL Circuit (5 marks)

- i. Explain time constant, τ in circuit analysis.
- ii. The switch in **Figure 1** has been in position 'a' for a long time. At t = 0, the switch moves to 'b'.
 - a. Derive an expression of $V_R(t) = V_S e^{-(t/\tau)}$
 - b. If L = 400 mH and $V_S = 5$ V,
 - i. Determine $V_R(t)$ at $t = \tau$, 2τ , 3τ and 4τ for *R* values of $4 \text{ k}\Omega$, $6 \text{ k}\Omega$ and $8 \text{ k}\Omega$.
 - ii. Sketch the response of $V_R(t)$ versus t.

- iii. The switch in **Figure 2** has been in position 'b' for a long time. At t = 0, the switch moves to 'a'.
 - a. Derive an expression of $V_R(t) = V_S(1 e^{-(t/\tau)})$
 - b. If L = 400 mH and $V_S = 5$ V,
 - i. Determine $V_R(t)$ at $t = \tau$, 2τ , 3τ and 4τ for *R* values of $4 \text{ k}\Omega$, $6 \text{ k}\Omega$ and $8 \text{ k}\Omega$.
 - ii. Sketch the response of $V_R(t)$ versus t.

Figure 2

FACULTY OF ELECTRICAL ENGINEERING				
	Review	: 7		
COURSE: ELECTRICAL ENGINEERING	Release Date	: October 2023		
	Last Amendment	: September 2023		
Course Code: SEEE 2742	Procedure Number	: PK-UTM-FKE-(O)-08		

- iv. Perform the above preliminary exercise using any simulation tools (PSPICE, MATLAB, Multisim, LTSpice etc.) to validate your results (use a 500 Hz, 5 Vp-p with +2.5V DC offset square wave signal for V_s).
- v. Suggest experimental procedures to prove the result obtained from the exercise using a square wave signal generator instead of a switch.

Part 2: RC Circuit [5 marks]

- i. Explain time constant, τ in circuit analysis.
- ii. The switch in **Figure 3** has been in position 'a' for a long time. At t = 0, the switch moves to 'b'.
 - a. Derive an expression of $V_C(t) = V_S e^{-(t/\tau)}$
 - b. If $R = 1 \text{ k}\Omega$ and $V_S = 5 \text{ V}$,
 - i. Determine $V_C(t)$ at $t = \tau$, 2τ , 3τ , and 4τ for C values of 0.05 µF, 0.1 µF and 0.15 µF.
 - ii. Sketch the response of $V_C(t)$ versus t.

Figure 3

- iii. The switch in **Figure 4** has been in position 'b' for a long time. At t = 0, the switch moves to 'a'.
 - a. Derive an expression of $V_C(t) = V_S(1 e^{-(t/\tau)})$
 - b. If $R = 1 \text{ k}\Omega$ and $V_S = 5 \text{ V}$,
 - i. Determine $V_C(t)$ at $t = \tau$, 2τ , 3τ , and 4τ for C values of 0.05 µF, 0.1 µF and 0.15 µF.
 - ii. Sketch the response of $V_C(t)$ versus t.

Figure 4

- iv. Perform the above preliminary exercise using any simulation tools (PSPICE, MATLAB, Multisim, LTSpice etc.) to validate your results (use a 500 Hz, 5 Vp-p with +2.5V DC offset square wave signal for V_s).
- v. Suggest experimental procedures to prove the result obtained from the exercise using a square wave signal generator instead of a switch.

<u>Important Note:</u> Students are required to bring their laptop to VERIFY all simulation results. Students are required to bring a USB drive to capture output from the oscilloscope.

FACULTY OF ELECTRICAL ENGINEERING

II. EXPERIMENT

'R-L and R-C Series Transient Circuits'

IMPORTANT: Students need to complete the PRELIMINARY EXERCISE before the laboratory session.

1. Aims:

- i. To investigate the current time response in RL circuit due to changes of resistance.
- ii. To investigate the voltage time response in RC circuit due to changes of capacitance.

2. Equipment:

Signal generator, Oscilloscope, Decade inductance (L), Decade resistance (R) and Decade capacitance/condenser (C)

3. Instructions:

Precaution:

Ensure that the 'earth' connections of the oscilloscope probe are at the same earth point. Failure to observe this will damage the oscilloscope.

i. Part 1: RL Circuit

Based on item (v) in the preliminary exercise (Part 1), perform the RL circuit experiment. Record/draw the results in appropriate table/graph. Find the relationship between the time constant and the voltage response. Compare and discuss the results with preliminary exercise.

ii. Part 2: RC Circuit

Based on item (v) in the preliminary exercise (Part 2), perform the RC circuit experiment. Record/draw the results in appropriate table/graph. Find the relationship between the time constant and the voltage response. Compare and discuss the results with preliminary exercise.