Fakulti:

FAKULTI KEJURUTERAAN ELEKTRIK

Nama Matapelajaran: MAKMAL PBL TAHUN 3

Kod Matapelajaran : SKEL 3742

Semakan 01
Tarikh Keluaran : 2020
Pindaan Terakhir =292g 5th May 2020

No. Prosedur : PK-UTM-FKE-(0)-10

SEKOLAH KEJURUTERAAN ELEKTRIK

UNIVERSITI TE
KAMP
J

KNOLOGI MALAYSIA
US SKUDAI
OHOR

VLS| SYSTEM DESIGN

LABORATORY (VLSI DESIGN)
Pre — Lab : IC Design Flow

Prepared by Certified by
Mr. Izam bin Kamisian P.M. Dr. Ir. Rubita binti Sudirman
Dr. Muhammad Afiq Nurudin bin Hamzah (Head of ECE Department)
Dr. Shahidatul Sadiah binti Abdul Manan
Signature Signature
Stamp Stamp
Date 9 February 2020 Date : 9 February 2020

Task S‘/ I-I[]PS\/S®

In this lab, we will be using four Synopsys tools to design an integrated circuit (IC),
which are:

1. Verilog Compiler and Simulator (VCS) for circuit design verification.

2. Design compiler (DC) for synthesis.

3. IC Compiler (ICC) for place and route.

4. Prime Time (PT) for static timing analysis (STA).

The complete design flow is shown in Figure 1 below:

Specification

v v

RTL design + IP Testbench

v v

RTL Verification
FPGA

Prototyping \l,
Logic Synthesis <

V

Testbench > Gate-level Verification |&

|

STA

N

Standard

A

Cell
Y Library
Physical Implementation || (PDK)

{

Physical Verification <

v

Testbench L s Gate-level Verification |<€———

y

STA «—

N
TAPE-OUT

Figure 1: Complete IC Design Flow

For prelab, you are required to go through the tasks for all four tools before coming to
the in-lab session and submit the answers for all the questions in the first lab session.

Verification Lab

Task 1

In this lab, you will run a basic verilog simulation using Synopsys VCS. This simulation exercise will
use VCS's graphical user interface tool called DVE. The design used is a simple 4-bit adder.

Go to directory taskl
cd ~/lab_work/verification/task1

Use the "Is" command to view the files in this directory. You should find two files: adder.v (design
file) and test_adder.v (testbench file)

Run VCS to check if your verilog files have any syntax errors:
vcs adder.v

On your screen, you will see the VCS copyright information, followed by various compile log
information. Look for the message that says "../simv is up to date":

-lm -lpthread -1ldl
..fsimv up to date
CPU time: 1.738 seconds to compile + .436 seconds to elab + .612 seconds to link

This indicates your design does not have any syntax errors and is ready for simulation.

Now lets check the testbench. Since the testbench instantiates the adder, we need to compile both
files:

vcs test_adder.v adder.v

Did you get the message "../simv is up to date", if yes, then both files have no syntax errors. We will
see how to fix syntax errors in the next lab. For now, lets run the simulation. To simulate the design:

ves -R -gui -debug_all test_adder.v adder.v

The "-R" option tells VCS to run the simulation after compilation, while the "-gui" option invokes DVE,
the graphical interface. The debug_all option allows for source tracing. Wait for DVE gui to appear.
You will get the following window:

DVE - TopLevel.1l - [Source.l - test_adder: test_adder.v] /home/sree/.../verification/taskl/simv
[Fle Edit View Simuator Signal Scope Trace Window Help =18 %
] ERIEE G IR A e CTPRGD BRG]
= Haa&lls s o e EREEEEERIEEEEETE] BO-EB-7 8-
ree @aeallasal [[
T e S - |
B b EERS v~ HIEEED 2
L S T = 2 3| B S Y
Variable wal 4 wire [4:0] sum;
FI sty
- 0 i31:0 E
- 0310 7 adder DUT { .ind{inl), .in2(in2), .sw{sum) J;
H- T sumfa 0] i initial
- 0 int [30] ig begin
w230 12 for (ist; ici6; isivi)
oI e i P 2N
3| e
EE R I e
it =iy
5|
FH
13 always @(n\] or mZ)
20 §displap ("inl = %d, inZ = %4, sum = %d*, inl, inZ, sum);
3
5| catmonte
4 | v Goto = [[mamersreedian_workverification task | lest_acider.y [1 v Rewse
test_adder = | test_aclder. I
X
x| thronologic Y63 simulator coppWight 1991-2011
Sombatne Tonegave propristors, Romation
Sompiler sorsian Eooan o-b1, Kruntine version B-2011 09-9PY; Har 16 11:01 2012
VeD+ Writer E-2011.03-5P1 copyrd¥ht (¢} 1991-2011 by Synopsys Lo
TR £iLe Phanas SEee ih ok L SeAsR b L et VeaL par epened sucoesseully,
Log 4 Histon L ¥
dver | \
‘ [l = stoppest: [0

Right click on the Testbench module (test_adder) under the hierarchy pane, and select Add to
Waves - New Wave View as in the figure below.

| DVE - TopLevel.l - [Hier.1] /home/sr

[E Fle Edit “iew Simulator Signal Scope Trace Window Help

Il 0><13'|JJD@9[§|JJ%\EX[“[MI
| o] RS 1= [T TS RN
[N @@@@[@Iu@@ _IJJmm
=———6]

1
le =1[7= = |E-[- 2
| ind = 3 reg [3:0] ind, ing;
Hierarchy Mariable ‘; Wiie [4:0] zum;
T integer i,7;
+- 0 if31:0] [3
B | ; adder DUT ¢ . ind{ir
Show Source 30 "ﬂ:;ﬁl
H Show Schematic i; for (i=0; i<16; i=:
Show Path Schematic 33 :or_(j=0; i <16;
Foiin
inl = i;
° ind = j;
D Uil » BB Fecent (New View) Ctrled
(Rt 00 B Y T Create new group s @(inl or inZ}
gddl To Watches 3 ! lap ("ind = %d,
B Shio I Class Browser, 22 endnodnle

Sty Full Fierarehy;

e e
% tove Down

I Expand by Levels D ¥ Goto = Imome.fsree.ﬂab_work.i\ferif

——————— Egpand Al
test_acdder 3
— Collapse Parent _I | e RS I

=l| chronologid Collapse All h-2011

tontains 5y .

Compiler we Select by Levels b | version E-2011.03-5P1; Mar 16 11:01 2012

WeD+ Writer Select Al 1391-2011 by Zpnopsys Inc.

The file '/ = Honstaskl/inter. vpd' was opened successfullp

& St Breskooints..
Add Dumg...
D
. Show External Functions...
WLog AHistory S
dves I

Adds signals to new Wave view.

This will launch the waveform viewer, and load all the signals (ports, signals) into it. There is no
waveform value yet, as the simulation has not been run.

Run the simulation by clicking on the RUN button JJ 4, I-

Tl

You can click on the run button on either the waveform window or the main DVE gui - both perform
the same operation. This action will cause the simulation to run until completion. You will see the
waveform displayed on the wave window.

Use the zoom in button on the toolbar to get a closer look. Click on the zoom in button a few times.

, zoom out (2x) button
e

Then using the scroll bar at the bottom of the wave window, scroll to the beginning of the waveform.

—

"o ! o4

- I
[IR

Scroll to the beginning. Move the scroll bar to this position.
Look at the waveform values. Do they match your expected value for an adder?

The values displayed for the bus signals (in1, in2, sum) is in hex. You can change the default radix to
decimal (or binary or octal) by following this step:

Select the signal "sum". Right click on it, and select Set Radix - Decimal.

TS Wathes T User-Defined 3 T o
Ap-an-an-a E E=—1 [
; ¥ Set Insertion Bar m——
"_ﬂ R Insert Divider ascll st ar sl
b '7 Set Bus. Einary M ’7
Set Expressions...
L= = =
+ I oric Properties = 2|l 4
L -
Bo e cB —
(<) [Shirt Time...

Highlight Item > Signed magnituce
Highlight X Walues One's Complemerit

—

Aralog > Two's Complement

S |test_adder B Trace Drivers

ace Loads

State MName

=

Default

et Draw Style Scheme

§ @ DB o pefault Properties

o Mew Group Froperties

Repeat the above steps for the signal "in1" and "in2". Check the output value to see if its correct - it
should be.

Next we will see how to use source code tracing. That is to see your code execution sequence.
Arrange the windows so that you are able to see both of them, some overlap is fine.

Make sure you are able to see both windows.

On the main DVE gui, click on Simulator - Start/Continue. This brings the simulator back to time 0,
the starting point. Notice that the waveform has cleared. Look at the source code window. Lets see
what the execution sequence of your code is. Click on the Next button a few times:

[D 'ﬁl — The yellow arrow on the source code shows the current execution line. At the same

—I—' notice that the waveform appears on the wave window. You may want to zoom in.
-1 == Il

Continue clicking the Next button a few more times - do you see the sequence of your code
execution? Based on your design knowhow, you should be able to deduce if the execution is correct
- in this case it’s correct. You can hit the Run button (the down arrow) to complete the simulation
run.

This is how you verify a simple design. More complex designs will require advance verification
techniques such as using assertions and native testbench constructs.

Now exit the simulator, Left click on File, then choose Exit and followed by OK.

This completes Task 1.

Task 2

In this lab, you will run a basic verilog simulation using Synopsys VCS. This simulation exercise will
use VCS's shell (command line) interface. The same design from Task 1 is used here.

Go to directory task2
cd ~/lab_work/verification/task2

Use the "Is" command to view the files in this directory. You should find two files: adder.v (design
file) and test_adder.v (testbench file)

Check the adder file for syntax errors. Type:
vcs adder.v
Did the design compile successfully?

VCS returns an error message like this:

Parsing design file ‘adder.v’

Error-[SE] Syntax error
Following verilog source has syntax error :
"adder.v", 4: token is '[°'
ouput [4:0] sum;

1 error
CPU time: .105 seconds to compile

This indicates a syntax error in your adder source file. The message "adder.v", 4: indicates the file
and line number where the error might have occurred. In general, the error might occur on the
specified line or one line above. Can you tell what the error is?

The word “output” is spelt wrongly. It should be "output" and not "ouput".
Open the file, adder.v in a text editor (gedit), type:

gedit adder.v

Fix the error and save the file. Exit gedit when done.

Now recompile the design again:

vcs adder.v

The compilation should complete successfully with the message:

../simv up to date

Now check the testbench file:

vcs test_adder.v adder.v

Seems like more errors are detected. You should get the following message:

Error-[IBELH5-NRIRT] Illegal behavioral left hand side
test_adder.v, 15
Non reg/integer/real/time/realtime cannot be used on the left hand side of
this assignment
The offending expression is : inl
Source info: inl = i;

Error-[IBELH5-NRIRT] Illegal behavioral left hand side
test_adder.v, 16
Non reg/integer/real/time/realtime cannot be used on the left hand side of
this assignment
The offending expression is : in2
Source info: in2 = j;

2 errors

The cause of this error is the testbench file, test_adder.v. Based on your knowledge of verilog, fix
this error using the same method as above, then recompile the design.

Do not continue until you have fixed all errors, and compilation completes successfully.
The testbench contains self-checking constructs. Run the simulation using the command shell:
vcs test_adder.v adder.v -R -l run.log

The option "-I" thats small "L", captures all the output to a log (text file) called run.log. Once
simulation completes, use gedit to open the run.log file:

gedit run.log

Browse through the file. Are the results correct? . It should be. Notice the message
"Simulation Completed Successfully"”. This is the message from the testbench indicating that the
simulation run has completed with no functional errors i.e. NO BUGS!

Now we will create a functional error in the design adder. Functional errors are caught during
simulation run, and the cause of the error is found during debug. Syntax errors are found during
compilation.

Our design is an adder, buts let change the function to that of a subtractor. In the file, adder.v,
change the "+"toa "-"

sign:

from: assign sum =inl +in2;

to: assign sum =inl-in2;

Use gedit to make the above change and save the file. Now rerun the simulation:

vcs test_adder.v adder.v -R -l run.log

Once the simulation completes, open the log file, run.log with gedit, and look at the output. Notice
all the error messages:

inl = 15, in2 = 14, sum = 1
ERROR: SUM not equal to IN1 + IN2
inl = 15, in2 = 15, sum = @
ERROR: 5SUM not equal to IN1 + IN2
Vs Simulation Report

The above is a simple example of a self-checking testbench. Self-checking testbench is a better way
to verify complex designs.

In this lab, you have seen how to fix syntax error and run the simulation using the shell (no GUI) by
using self-checking testbench.

This completes VCS lab.

Design Compiler (DC) Synthesis Lab

Task 1

In this lab you will perform logic synthesis operation on a Verilog source code using Synopsys
Design Compiler (DC). Logic synthesis optimizes and converts your RTL design into a Gate-
level netlist.

Go to directory taskl under the lab_work/synthesis/task1 directory:

cd ~/lab_work/synthesis/taskl

List down all the directories/files under the current directory:

Is

The directory lib contains the standard cell technology library required for synthesis. The
source directory contains the Verilog source files that will be synthesized. Note that for
synthesis, we don’t require the testbench.

1. DC Setup

Before we can start using DC, we will need to create a setup file that specifies the standard
cell library that we are going to use and its location. Using gedit, create a file called

".synopsys_dc.setup" (note: there isa "." at the beginning of the file name).

gedit .synopsys_dc.setup

Add the following library settings to the file:

set search_path "$search_path ./lib"
set target_library "saed90nm_max_pg.db"
set link_library " * Starget_library"
set symbol_library "generic.sdb"

Save the ".synopsys_dc.setup" and exit gedit.

2. Read & Link Design

Launch the DC GUI, Design Vision (DV), at the terminal type:

design_vision

Locate the DV command prompt at the bottom of the DV window:

“ Luy | reseey g P P |

design_vision=> ||

Here you can type in any DC commands. We will now verify that your library settings in the
".synopsys_dc.setup" file was applied correctly. Type:

printvar search_path

This will print to the screen all the search path that DC will look into to find files and
libraries. Ignore the first few paths - they are the system wide default path which you should
not modify. Look towards the end - do you see the library path: ./lib ?

If yes, proceed to the next step, else quit DV (File - Exit - OK), and change the search_path
setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup".

Type:

printvar target_library

You should get:
target_library = "saed90nm_max_pg.db"

if you did not get the above setting, quit DV (File - Exit - OK), and change the target_library
setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup".

Type

printvar link_library

You should get:
link_library =" * saed90nm_max_pg.db"

if you did not get the above setting, quit DV (File - Exit - OK), and change the link_library
setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup".

Finally type:

printvar symbol_library

You should get:

symbol_library = "generic.sdb"

if you did not get the above setting, quit DV (File - Exit - OK), and change the symbol_library
setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup".

If you got the results as above, your library setting is correct, we can then proceed to read in
the design. Click on the Read icon:

le ¢

Double Click on the Source directory, and select the file, counter.v and then click on Open.
This will load the RTL design into DC's memory. In the Logical Hierarchy pane, select the
design, counter:

Logical Hierarchy __ ¢
{E)=== counter

Select this design (when
selected, its highlighted!)

SPBN e

To view the block diagram of the design, click on the "Create Schematic of Selected Objects"

T

m

toolbar icon:
You can also right-click on the “counter” design in the Logical Hierarchy pane and select
Schematic View. Press the “F” key to zoom fit the view or use the zoon icons on the toolbar.
This will show the block diagram, with the input ports on the left, and output ports on the
right. Can you identify the 4 input and one output port?

Block View:

counter

4_pins(load[],...)

What is the size (hnumber of bits) of the output port?

You can also get the schematic view of the RTL code — double click on the Block Diagram
view of the Counter design

This is view of the unmapped RTL netlist:

3. Design Constraints

Next step is to apply design constraints. For this design we will apply the following sets of
constraints:

Get the smallest possible design

Clock period of 5ns

Clock transition of 0.5ns

Input delay of 1ns

Output delay of 1ns

Output load of 0.001pf

Input transition (for all inputs except clock): 0.8ns

No vk wnNR

The constraints are written using TCL syntax. Type the following in DV command prompt:
set_max_area 0

create_clock -period 5 [get_port clk]

set_clock_transition 0.5 [get_clock clk]

set_input_delay 1 -clock clk [get _port "rst en load"]

set_output_delay 1 -clock clk [get_port cout]

set_load 0.001 [get port cout]

set_input_transition 0.8 [get_port "rst en load"]

When you type in any of the above command, DV will return a value of "1" like this:

design_vision> set_max_area 2]

1

design vision= create clock -peried 5 [get port clk]
1

design_vision= set_clock_transition 0.5 [get_clock clk]
1

A return value of "1" indicates the command as has been successfully accepted by DC. If you
make any mistakes, just retype the command again.

Next step is to optimize the design.

4. Optimize Design

We will now optimize and map the design to cells from the target library. To do that, click on
Design - Compile Design - Ok. Do not change any setting in the dialog box.

Wait until optimization completes. You will get the following message in DV's log window:

0:00:02 244.0 0.00 0.0 0.0
Loading db file '/home/sree/lab_work/synthesis/taskl/lib/saed90nm max_pg.db'

Optimization Complete

design_vision>
4]
Log | History

design_vision> |

Notice how when the optimization completes the design hierarchy view is cleared. Click on
Hierarchy — New Logical Hierarchy View to load the compiled (mapped) design.

Take a look at the design schematic again. Right Click on counter design under the Logical
Hierarchy pane and choose Schematic View. Double click on the Block View to get the
Schematic View. Notice how the schematic view has changed. The design is now composed
of gates from your target library.

5. Save the Design

Once optimization has completed, we can save the design and other related data for the
next stage in the IC design process (layout).

To save the netlist as binary (DDC) file, at DV command prompt, type:
write -f ddc -hierarchy -out ./netlist/counter.ddc

To save a Verilog netlist, type:

write -f verilog -hierarchy -out ./netlist/counter.v

We also need to write out our design constraints in a format called SDC:
write_sdc ./netlist/counter.sdc

Now we need to analyze the design to see if we have met our design constraints (area &
timing). For that we need to generate reports.

6. Analyze Design
To get the area of your design, type: report_area
Take a look at the last two lines:
Total cell area: 236.838003
Total area: 244.004085

The total area includes the cell and wire(net) area. The numbers for your design might vary
slightly!

To get a clock report, type: report_clock

What is the clock period?

Does it match your design constrain? . It should!
Type: report_clock -skew

What is the clock transition? . It should!
Generate a timing report, type: report_timing

You will get the following report:

o R

Report : timing
-path full
-delay max
-max_paths 1
Design : counter
Version: F-20811.089-5P3
Date ¢ Mon Mar 19 11:36:56 2012

Operating Conditions: WORST
Wire Load Model Mode: enclosed

Library: saed98nm_max_pg

Startpoint: en (input port clocked by clk)
Endpoint: cout_reg[@]
(rising edge-triggered flip-flop clocked by clk)
Path Group: clk
Path Type: max

Des/Clust/Port Wire Load Model Library

counter 8080 saedd0nm_max_pg
Point Incr Path
clock clk (rise edge) 0.80 0.80
clock network delay (1ideal) 0.00 0.00
input external delay 1.08 1.8 r
en (in) 0.00 l.ee r
Ul4/0N (INVXO) 1.49 2.49 T
U6/0Q (AD22X1) 1.19 3.68 T
cout_reg[@]/D (DFFARX1) 0.83 3.70
data arrival time 3.70
clock clk (rise edge) 5.00 5.00
clock network delay (ideal) 0.00 5.00
cout reg[@]/CLK (DFFARX1) 0.00 5.80 r
library setup time -0.24 4.76
data required time 4.76
data required time 4.76
data arrival time -3.70

slack (MET)

Launch Path

Capture Path

Take a look at the slack value. Your number maybe slightly different from the above (1.06).

However it should be a positive value. A positive slack value (MET) indicates that you have

met your timing constraints. A negative slack value (VIOLATED) indicates a timing constraint

failure. A timing failure will require re-optimizing the design or changing the source code.

Quit DV, click on File - Exit - OK.

This completes task 1. Proceed to the next task.

Task 2

In this lab, you will perform synthesis using DC shell interface i.e. the most common way of
doing synthesis. You will create a script file containing all the design constraints and another
command script file to run the synthesis process in batch mode.

Perform all task under the task2 directory:
cd ~/lab_work/synthesis/task2

The ".synopsys_dc.setup" has already been created with the necessary library and path
settings. To run in batch mode, we will need two files - constraints and command file. Lets
create the constraints file first. Type the following:

gedit scripts/constraints.tcl

Add in the following constraints to the script file:
set_max_area 0

create_clock -period 5 [get_ports clk]
set_clock_transition 0.5 [get_clocks clk]

set_input_delay 1 -clock clk [get _ports "rst en load"]
set_output_delay 1 -clock clk [get_ports cout]

set_load 0.001 [get_ports cout]

set_input_transition 0.8 [get_ports "rst en load"]

These are similar constraints to task 1. Save the file and exit gedit. The file will be saved to
the scripts directory. Check to see if the file has any syntax errors, at terminal, type:

dcprocheck scripts/constraints.tcl

If you get any errors, its due to typos, refer to the above constraints, and fix the errors.
Make sure you get no errors before proceeding to the next step. If there are no errors,
dcprocheck will return the following message:

Loading snps_tcl.pcx...

Loading syn.pcx...

scanning: /fhome/sree/lab_work/synthesis/task2/scripts/constraints.tcl
checking: /home/sree/lab_work/synthesis/task2/scripts/constraints.tcl

Now create a command file, which will read in the design, apply the constraints, compile the
design, generate reports and exit the tool.

gedit scripts/run.tcl

(you can use gedit or any text editor of your choice)

Add in the following commands to the script file:

read_verilog source/counter.v

link

source scripts/constraints.tcl

compile

write -f ddc -hierarchy -out netlist/counter.ddc
write -f Verilog -hierarchy -out netlist/counter.v
write_sdc netlist/counter.sdc

redirect -file reports/area.rpt { report_area }
redirect -file reports/timing.rpt { report_timing }
redirect -file reports/clock.rpt { report_clock }
redirect -file -append reports/clock.rpt { report_clock -skew }

exit

Save the file and exit gedit. The file will be saved to the scripts directory. Check to see if the
file has any syntax errors, at terminal, type:

dcprocheck scripts/run.tcl
Script commands summary:

e read_verilog/link: Read in the design, and checks to ensure design is loaded properly
e source: read in constraints file, and applies the constraints to the current design

e compile: optimizes and maps the design to the target technology

e write: saves design netlist

e write_sdc: saves design constraints file (SDC)

o redirect -file: redirects the specific command output to a file instead of the screen.

Now run the synthesis process in batch mode, type:

dc_shell -fscripts/run.tcl |tee dc.log

Note: | is the pipe character (typically above the return/enter key).

The above command will invoke dc_shell, which is the shell interface program for DC, and
execute the commands in the file run.tcl. All the output to screen is also captured in the log
file dc.log.

Once the synthesis process completes, use gedit to view the file, dc.log:
gedit dc.log
Check to see if log contains any "Error". If you have, fix it - its probably caused by typos.

Then use gedit to view all the report files in the reports directory.

What is the total area:
What is the clock transition time?
Is the timing slack positive or negative?

Did you meet your timing constraints?

This completes task 2. Continue to the next task.

Task 3

In this task, you will have to perform the synthesis task based on the given specification. You
can use Design Vision or dc_shell to perform the synthesis operation.

Following are the specifications of the design:

Design name detector

File name source/detector.v
Target library syn90nm_slow.db
Link library * syn90nm_slow.db
Symbol library generic.sdb

Library path lib

Clock period 2ns

Input delay 0.2ns

Output delay 0.1ns

Clock transition time 0.01ns

Input signal transition time 0.1ns

Output capacitance 0.005pf

Area goal smallest possible size

Based on the above specification, your task is to:

e Create a ".synopsys_dc.setup" file with the appropriate library and path settings.
e Create a constraints file with the name detector_cons.tcl.

e Create a command file with the name run_detector.tcl that does the following:
e Reads in the design

e Applies the above constraints via detector_cons.tcl

e Optimizes the design

e Generates a timing, area, cell and clock report which must be saved to the reports directory
e Write out a Verilog netlist and save it to the netlist directory

e Write out a DDC file and save it to the netlist directory

e Generates SDC file and saves it to the netlist directory

e Exit DC/DV when done.

e Al DC run commands and outputs must be capture in a log file.

When done, you will need to hand-over the following files to your lecturer:

e .synopsys_dc.setup
e run_detector.tcl

e detector_cons.tcl

o Area report

e Timing report

e Cell report

e Clock report

e Synthesis run log

Does your design meet its timing constraints? __yes_. What is the slack? __0.091__
This completes task 3. In the next lab, we will cover how to do layout (PnR).

Thank you

Physical Implementation Lab

In this lab you will perform physical implementation operation on a netlist using Synopsys IC
Compiler (ICC). Commonly called place & route (or pnr), physical implementation task takes
in a gate-level netlist and converts it into a physical layout that can be sent for IC fabrication.

Go to directory taskl under the lab_work/pnr directory:

cd ~/lab_work/pnr

List down all the directories/files under the current directory:
Is

The directory ref contains the standard cell technology library required by ICC. The netlist
directory contains the gate-level netlist file (ORC.ddc) in DDC format. This file was generated
by Design Compiler using the “write -f ddc ...” command. Do all your work from the pnr
directory.

1. ICC Setup

Before we can start using ICC, we will need to create a setup file that specifies the standard
cell library that we are going to use and its location. For this lab the setup file,
".synopsys_dc.setup" (note: there isa "." at the beginning of the file name) is provided for
you. This is the same file that is used by Design Compiler but now we have additional
libraries specified in it.

Using gedit, view the contents fo the “.synopsys_dc.setup” file. DO NOT MODIFY THIS FILE!
gedit .synopsys_dc.setup

Browse through the file to view the physical library i.e. Milkyway settings. When done, exit
gedit.

2. Read Design

Launch ICC in shell mode, open a terminal and type:

cd ~/lab_work/pnr
icc_shell

At the ICC command prompt, read in the DDC netlist from the netlist directory, type:

import_design -format ddc -top ORC ./netlist/ORC.ddc

Next, tie all the power pins of the gates in the netlist to the power nets, VDD and VSS:

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS
derive_pg_connection -power_net VDD -ground_net VSS -tie

For the next step, we will use the GUI, at the ICC prompt, type:
start_gui

userl@vm1:~/lab_work/pnr - =] x

File Edit View Search Terminal Help

Reading ddc file '/home/userl/lab_work/pnr/netlist/ORC.ddc'.
Loaded 1 design.

Current design is 'ORC'.

Current design is 'ORC'.

Linking design 'ORC'

Using the following designs and libraries:

ORC /home/userl/lab_work/pnr/netlist/ORC.ddc
cb13fs120_tsmc_max (library) /home/userl/lab_work/pnr/ref/db/sc_max.db

Info: Creating auto CEL.

Information: Performing CEL netlist consistency check. (MWDC-118)
Information: CEL consistency check PASSED. (MwDC-119)
Information: Saved design named ORC. (UIG-5)

1
icc_shell> derive_pg_connection -power_net VDD -power_ pin VDD -ground_ne
t VSS -ground_pin VSS

Information: connected 8502 power ports and 8502 ground ports

1
icc_shell> derive_pg_connection -power_net VDD -ground_net VSS -tie
reconnected total O tie highs and 0 tie lows

1
icc_shell> start_guill

You will get the ICC GUI. There will be two windows — ICC Main window and Layout window.

Main Window Layout Window

indow.1 - o x

File Edit View Sel i ist Hiers Clock Schematic Test Window Help
|t s®eom %) @ (|@ »||[orc.ceLis]|

7 Loading db file */home/userl/Lab_work/pnr/re
Loading db ome /u

1/db/sc_max.db’
iser1/lab_work /pnr/ref /db/sc. .

-~ Internal Reference Library Settings ----------------

Library /home/user1/lab_work/pnr/Mi_L18
Reference /home/user1/lab_work/pnr/ref /my_lib/sc =l
o >
£

|
Log [History
icc_shell>]

~ Command prompt: you
can type any ICC
command here

You will do your work from the Layout window. Make that window the active window on
your desktop.

IC Compiler - LayoutWindow.1 - Block Implementation - ORC.CEL;1 [write] = Lib:MW_LIB [write] - [Layout.1]

e e o e Slgnoﬁ Hmsmng ECO Verfication Power Rail Timing Window Help

salls0ea 0wk ~22E@5laa@ @ Iflo-c-o®
El Input mode ~ Rectangle |Rectangle Intersect |Selection Query P
@ Smart € Line I Enable [Feplace =] ¥ Annotations | (2)

_I #

100% Level[o 3
0b|ects | Layers | Settings |
g | only select highighted
5

All the logic cells that are part

El Die Area
o Core Area
B

of the design

Terminal
s cel

iEREEEEREREEEENE
Jrraasaaaaaanany)

3. Floorplan

Next up is floorplan. Here is where we specify the die area, pin arrangement and power
network.

From the Layout window menu bar, Click Floorplan — Create Floorplan. Specify the values as
shown in the image below:

Create Floorplan

Control type
+ Aspect ratio " Boundary Width/Height

Core utilization: |O.? Core width: | 1.0

Aspect ratio (H/w): |1.0 Core height: |l.f:.I
¥ Horizontal row ¥ Double back

v Start first row I Flip first row
\
etween core area and terminals (pads)

Left: |50 Right: |50

ottom: |50 Top: |50|

T /
r 5eepmmd reitflace

™ Min pad height I~ Pad limit

I-ch—fr:—'.}||'||}|_‘ emen At

oK Cancel Apply | Default Help |j/

'

Click OK.

Your Layout window will look similar to this:

IC Compiler - LayoutWindow.1 - Block Implementation - ORC.CEL;1 [write] Lib:MW_LIB [write] - [Layout.1]

B8 File Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail Timing Window Help

lzdlllt ve0eaqmx] ~22%@8 :lee@caolea]E-E- BB * 5o c-w=s

Selection

Replace x| Clear

Input mode (~ Rectangle
@ Smart (" Line

IT Rectangle Intersect Query ¥ Map
N @

I~ Enable IV Annotations
m

H

cell to be
placed

%5

= - within die
x Apply | -]
-~ o[100% x| Levello =
n Objects I Layers | Settings |
] I~ only select highlighted InpUt/OUtpUt
Object Type | Vis. [Sel.|clr. = pins
i-Die Area r
b ~CoreArea W T
-Port v F
Y -Terminal | T2
- Cell F
m | [P r e cell
- #Pinshape 7 T
| |esterow © T placement
=) +~Bound r ¥~
#Plan Group F W H
#Placemen.. ¥ area (dle)
IZadilE! RoutingBl... ™
a powerPla.. = F i
) ~RP G T
- OO S i
Preset [Default =l 2 B

Before we can move all the cells in, we need to create the power (VDD) and ground (VSS)
rings (supply network). Click Preroute — Create Rings. Key in the values as shown in the

image below:

? Create Rings
t

s RectilinearC_Rectangular_|2

Nets: | VDD VSS

—Around

{* Core
¢ Specified macros ¢ Specified as a Group Except macros

Macros;

| IS 1 =)

= Region

—Coordinates

] —
- Sid Offset Width Layer\ Extend
T o meft |1 [20 [B mETALS (25) =[N Bottom [~ Top

M Right [1 [20 [l METALS (25) - ™
W Bottom |1 | 20 [METAL3 (22) =] T

[B vETALS (22)

I 1 |20 Left [~ Right

(-\.

+ Offsets applied for DRC spacing

" Ignore parallel targets

[Create innermost core ring conservatively

[T Use advanced via rules

I™ Extend for multiple connections for gap = Ir

| oK Cancel | Apply | Undo | Default

7

Click OK.
The Layout window should look like this:

IC Compiler - LayoutWindow.1 - Block Implementation - ORC.CEL;1 [write] Lib:MW_LIB [write] - [Layout.1]

[Fle Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail Timing Window Help

s 2000 0mk ~22E@ Q@@ - @ 6|8~ e A

“— Input mode ¢ Rectangle |Rectangle Intersect [Selection Query ¥ Map
U | @ smart ¢ Line I Enable Replace ~| Clear ¥ Annotations | (2)
=

‘ A

_roply | i
20t[100% > Levello. =

Objects | Layers | Settings |
I~ only select highlighted

=
<

<

Obiect Type
Die Area r
Core Area
Port
Terminal
Cell

Pin

Pin Shape
Site Row
Bound

Plan Group
Placemen...
Routing Bl
Power Pla.

“";’.;‘.ﬁ-‘m‘:l“‘

‘ww e

v
<

00 o e A e e e i A R B A |

=

Preset|Default x| 2 B

Using the magnifier icon on the toolbar, zoom into the rectangle area to have a closer look.

LA LR Y 5 1 IIEII

Click on zoom in tool, and draw a rectangle around the die area to zoom in. The zoomed in
view in shown below:

VDD & VSS core
rings

Standard cells that
will moved into die
(core) area next

Once the rings hanve been created, we will create the power straps. Make the Main Window
the active window now (bring it to the forefront). At the icc_shell prompt, type in the
following command:

create_power_straps -direction horizontal -nets {VDD VSS} -layer METAL4 -width 20
-configure step_and_stop -step 250 -stop 350

IC Compiler = MainWindow.1 - o x

" Flle Edit vView Select Highlight List Hierarchy Design Attributes Clock Schematic Test Window Help
sHII 20| v22E||laca@boa

Type the above

command in here

Loading db file '/ho /lab_work/pnr/ref /db/sc_max.db* ﬁl
Loading db file '/ho /lab_work/pnr/ref/db/sc_min.db*

------------------- al Reference Library Settings -----------------

Library /home fuse Bb_work/pnr/Mi_LIB
Reference /home £r1/lab_work/pnr/ref/mv_lib/sc
< |

Log | History

Enl

icc_shell> |create_power'_straps -direction horizontal -nets {vDD vsSS} -layer METAL4 -width 20 -configure step_and_stop -step 250 -stop 350

|Ready ‘ | |E> %
The above command will create the power straps on metal layer 4, as shown in the image
below:

ignoff Finishing ECO \Verification Power Rail Timing Window Help
lleala-E-igEals + sla-c-os

T Map

7 Annotations | (2}

Power Straps

Back in the ICC prompt, key in the following commands:

set_pnet_options -complete {METAL3 METAL4}

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS
derive_pg connection -power_net VDD -ground_net VSS -tie

create_fp_placement -timing_driven -no_hierarchy_gravity

This will move all the standard cells into the core area. See figure below:

Final step under floor-planning would be to route all the power nets (VDD, VSS), type the
following command:

preroute_standard_cells -remove_floating_pieces

We are now ready for cell placement (within die) and optimization.

4. Placement
Lets optimize the placement of the cells within the die area, type the following commands:

set_separate_process_options -placement false

place_opt

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS
derive_pg_connection -power_net VDD -ground_net VSS -tie

5. Clock Tree Synthesis (CTS)
CTS builds a buffer tree for the clock network, to enable the clock signal to drive multiple
flip-flops with degrading the signal strength. Type the following commands:

remove_clock_uncertainty [all_clocks]
clock_opt

The layout will look a little different now because of the adding in of clock buffers and
routing of the clock nets. Try zoom/pan around the layout to view the clock routes.

The image below shows how the clock pin is routed to a clock buffer:
LI T [

6. Routing
Final step in the physical design process is to route the design. Type:

route_opt

Once completed, your routed design should look like this:

Re-run the following two commands to ensure all power/ground connectivity for any new
cells added in during the routing process:

derive_pg_connection -power_net VDD -power_pin VDD -ground_net VSS -ground_pin VSS
derive_pg_connection -power_net VDD -ground_net VSS -tie

Verify the design is free of any design rule violations (DRC), type:

verify_zrt_route

You should get the following output:

Verify Summary:

Total number of nets = 9933, of which 0 are not extracted
Total number of open nets = 0, of which @ are frozen
Total number of excluded ports = 0 ports of 0 unplaced cells connected to 0 nets
@ ports without pins of 0 cells connected to 0
nets
0 ports of 0 cover cells connected to O non-pg
nets
Total number of DRCs = 0
Total number of antenna violations = no antenna rules defined
Total number of voltage-area violations = no voltage-areas defined
Total number of tie to rail violations = not checked
Total number of tie to rail directly violations = not checked

This indicates no

1
icc shell> I DRC violations

Run a Layout vs. Schematic (LVS) check to ensure there are no shorts/open nets:

verify_lvs

The output should look like this:

** Total Floating ports are 0.
** Total Floating Nets are 0.
** Total SHORT Nets are 0.

*+ Total OPEN Nets are 6. This indicates no
** Total Electrical Equivalent Error are 0.

** Total Must Joint Error are 0. LVS errors

-- LVS END : --

Elapsed = 0:00:01, CPU = 0:00:00

Update error cell ...
1

Now let’s check if our design meets all the timing constraints. But first we need to extract
the parasitic in the layout (unwanted resistance and capacitance), type:

extract_rc

To run setup checks, type:
report_timing -delay max -path short

Look at the bottom of the report for the word “slack”:

clock network dela;r (propagated) 0.159 10.19
outY_reg[121]1/CP (dfcrgl) 0.00 10.19 r
library setup time -0.03 10.16
data required time 10.16
data required time 10.16
data arrival time -10.16
slack (MET) 0.00

slack (MET) indicates you have met the setup timing constraints.

To run hold checks, type:
report_timing -delay min -path short

clock clk (rise edge) 0.00 0.00
clock network delay (propagated) (.08 0.08
outY reg[l26]/CP (dfcrgl) 0.00 .08 r
Tibrary hold time 0.01 0.09
data required time 0.09
data required time 0.09
data arrival time -0.50
slack (MET) 0.41

Similarly, slack (MET) indicates you have met the hold timing constraints.

To get an overall status of your design including timing constraints, design rules, cell count,

type:
report_gor

Note: you can ignore any max fanout violations.

Now its time to save all the data. Save your layout database in Milkyway format:

save_mw_cel -as ORC_routed

Save your post-layout netlist in DDC format:

write -f ddc -hier -out netlist/ORC_postlayout.ddc

Save your post-layout netlist in Verilog format

write_verilog -no_physical_only_cells -no_core_filler_cells ./netlist/ORC_postlayout.v
Save all the design constraints:

write_sdc ./netlist/ORC_postlayout.sdc

Save the parasitic information in SPEF format:

extract_rc

write_parasitics -output ./netlist/ORC_postlayout.spef

The Verilog netlist and SDC/SPEF file will be used by PrimeTime to perform Static Timing
Analysis.

This completes ICC lab. Thank you

Static Timing Analysis (STA) using PrimeTime Lab

In this lab, you will perform Static Timing Analysis (STA) on a post-layout design using back-
annotated parasitic. Post-layout design is a design which has gone through a place & route
process. In this lab, you will use PrimeTime (PT) to perform timing analysis on design created
by IC Compiler.

Once you have completed your design layout in IC Compiler, you will write out the following
files:

1. Design netlist in ddc or Verilog format

2. Parasitic information in SPEF format

3. Design constraints in SDC format (Optional)

For this lab, we will only use the Verilog netlist and SPEF. We will specify the design
constraints manually to PrimeTime.

Go to directory lab_work/sta_lab/:

cd ~/lab_work/sta_lab

List down all the directories/files under the current directory:

Is

The directory lib contains the standard cell technology library required for STA. The netlist
directory contains the post-layout Verilog netlist files and SPEF file.

1. PT Setup
Before we can start using PT, we will need to create a setup file that specifies the standard
cell library that we are going to use and its location. Using gedit, create a file called

".synopsys_pt.setup” (note: there is a "." at the beginning of the file name).

gedit .synopsys_pt.setup

Add the following library settings to the file:

set search_path "$search_path . ./lib"
set link_path " * sc_max.db"
Save the ".synopsys_pt.setup" and exit gedit. Make sure you save the file in the

lab_work/sta_lab directory

2. Read & Link Design

Launch PT in shell mode, at the terminal type:

pt_shell

user@vml:~/lab-work/sta_lab - =] x

File Edit View Search Terminal Help
[user@vml sta_labl$ pwd
/home/user/lab_work/sta_lab
[user@vml sta_lab]$ pt_shell
PrimeTime (R)
Version 0-2018.06-SP2 for linux64 - Aug 308, 2018
Copyright (c) 1988 - 2018 Synopsys, Inc.
This software and the associated documentation are proprietary to Synopsys,
Inc. This software may only be used in accordance with the terms and conditions
of a written license agreement with Synopsys, Inc. All other use, reproduction,

or distribution of this software is strictly prohibited.
pt_shell> I

Here you can type in any PT commands. We will now verify that your library settings in the
".synopsys_pt.setup" file was applied correctly. Type:

printvar search_path
printvar link_path

Your output should look like this:

pt_shell> printvar link_path

link_path = "% sc_max.db"
pt_shell> printvar search_path
search_path =" . ./lipb"
pt_shell> i

If yes, proceed to the next step, else quit PT (type: exit), and change the setting in the
".synopsys_pt.setup" file as per the specification given above. Then redo the above steps. Do
not continue until your setting matches the above values.

Let’s read in the post-layout Verilog netlist from the netlist directory, type:

read_verilog ./netlist/DOLPHIN.v
link_design DOLPHIN

Your output will look like this:

pt_shell> read verilog ./netlist/DOLPHIN.v

1

pt_shell> 1link_design DOLPHIN

Loading verilog file '/home/user/lab_work/sta_lab/netlist/DOLPHIN.v'

Loading db file '/home/user/lab_work/sta lab/lib/sc_max.db'

Linking design DOLPHIN...

Information: 455 (84.73%) library cells are unused in library cbl3fsl20_tsmc_max
..... (LNK-845)

Information: total 455 library cells are unused (LNK-046)

Design 'DOLPHIN' was successfully linked.

Information: There are 4372 leaf cells, ports, hiers and 5038 nets in the design
(LNK-047)

1

pt shell> [

]

The top design name is DOLPHIN. When you do “link_design DOLPHIN”, PT sets the
current_design to DOLPHIN, and loads in all cells that make up the DOLPHIN design into PT’s
memory. To verify the current design, type:

current_design

This should return the value, “DOLPHIN” as shown in the following figure:

pt_shell= current_design
{"DOLPHIN"}
pt_shell> JJ

Since we will be doing hold analysis, we need to specify an additional library that models all
the minimum cell delays, type:

set_min_library sc_max.db -min sc_min.db

3. Apply Design Constraints

Now that the design has been successfully loaded into PT, we can specify our timing
constraints on the design. In a typical design flow, these will be the same set of constraints
as what you would have specified in Design Compiler with some minor changes.

Before we specify the constraints, let’s get the units that is used by PT, type:

report_units

Units

Capacitive load unit : le-12 Farad
Current_unit 1 le-06 Amp
Resistance_unit 1 1668 Ohm
Time unit 1 1e-09 Second
Voltage_unit : 1 Volt

1

From the resulting output, we can tell that the unit for time is ns and for capacitance is pico-
farad.

Specify a clock period of 6ns on the input port, clk. Type:
create_clock -period 6.0 [get_ports clk]

Since this is a post-layout netlist, the clock network has already been built, thus we can
instruct PT to calculate the clock latency, skews and transition. This is done by executing the
following command:

set_propagated_clock [all_clocks]

Specify the following Interface (input and output port) timing constraints on all the ports
except for clock port:

set_input_delay 1.0 -clock clk -network_latency_included \

[remove_from_collection [all_inputs] [get_ports clk]]

set_output_delay 2.5 -clock clk -network_latency_included [all_outputs]

Specify a load of 0.2pf on all output ports:

set_load 0.2 [all_outputs]

All the inputs except for clock is being driven by the library cell, bufbd4:
set_driving_cell -lib_cell bufbd4 \

[remove_from_collection [all_inputs] [get_ports clk]]

The final constrain would be the operating condition to model all PVT effects on the design:

set_operating_conditions -analysis_type on_chip_variation cb13fs120_tsmc_max

4. Constraints Validation
Verify the clock period is set to 6ns on the port clk, type:
report_clock

The output should look like this:

Attributes:
p - Propagated clock
G - Generated clock
I - Inactive clock

Clock Period Waveform Attrs Sources Voltage Config

clock period 6
Attribute P indicates a

unit is based on library propagated clock

To verify input delay constraints, type:
report_port -input_delay

Browse through the report, and verify it matches your constraints above.

Input Delay
Min Max Related Related
Input Port Rise Fall Rise Fall Clock Pin

clk -- -- -- -- --
clk_enable 1.00 1.00 1.00 1.00 clk
opl[0] 1.00 1.00 1.00 1.60 clk
opl([1] 1.00 1.00 1.00 1.00 clk
opl(2] 1.00 1.00 1.00 1.00 clk
opl[3] 1.00 1.00 1.00 1.00 clk

No constrains on the

clock port

Min and max delay as

expected

To verify output delay constraints, type:
report_port -output_delay

Browse through the report, and verify it matches your constraints above.

Output Delay
Min Max Related Related
Output Port Rise Fall Rise Fall Clock Pin

result[0] 2.50 clk --
result[l] 2.50 clk --
result[2] 2.50 clk --
result[3] 2.50 clk --
result[4] 2.50 clk --
result[5] 2.50 clk --

Min and max delay as
expected

To verify input drive, type:
report_port -drive

Browse through the report, and verify it matches your constraints above.

uriving cett

Input Port Rise(min/max) Fall(min/max) Mult(min/max) Clock Attrs(min/max)
clk_enable bufbd4/bufbdq bufbd4/bufbdd !
opl[0] bufbd4/bufbdd bufbd4/bufbd4 /
opl[1] bufbd4/bufbdd bufbd4/bufbd4 /
opl[2] bufbd4/bufbd4 bufbd4/bufbdd -/
opl[3] bufbd4/bufbdd bufbd4/bufbd4 -/
opl[4] bufbd4/bufbdd bufbd4/bufbdd -/
opl[5] bufbd4/bufbdd bufbd4/bufbd4 /
opl[6] bufbd4/bufbd4 bufbd4/bufbd4 /

driving cell is bufbd4

To verify the output port is set to 0.2pf, type:
report_port [all_outputs]

which will give you the following details:

Attributes:

I - ideal network

H - HyperScale context override

Pin Cap Wire Cap
frort Dir min/max min/max Attributes

result[9] out 0.2008/0.2000 0.0000/0.0000
result[28] out 0.2000/0.2000 0.0000/0.0000
result[4] out 0.20068/0,2000 0.0000/0.0000
result[30] out 0.20008/0.2000 0.0000/0.0000
result[23] out 0.20068/0,2000 0.0000/0.0000
result[16] out 0.2000/0.2008 ©.0000/0.0000

output port load set to 0.2pf

Finally, to verify the operating condition and analysis type, enter:
report_design
You should get the following report which shows the OC is set to cb13fs120_tsmc_max

and the analysis type is on_chip_variation.

Design Attribute Value

Operating Conditions:

analysis_type on_chip_variation
operating condition_min_name cbl13fs120_tsmc_max
process_min 1.2
temperature_min 125

voltage_min 1.e8

tree_type_min worst_case
operating_condition_max_name cb13fs120_tsmc_max
process_max 1.2
temperature_max 125

voltage_max 1.08

tree_type_max worst_case

5. Timing Analysis

Now we are ready to perform timing analysis. We will first use wire load models provided by
the foundry libraries to calculate cell and net delays. This method is fast but is not accurate
for deep submicron designs. However, it provides a good starting point for doing timing
analysis as it provides a general state of the design.

To get the overall state of the design timing, type:

report_analysis_coverage

pt_shell> report_analysis_coverage

e e e o o e e e o o o e e e e o s ol e el ol ol s o e e st e ol sk ok ke e ok ook ke
Report : analysis coverage

Design : DOLPHIN

Version: 0-2018.06-SP2

Date : Fri Jan 25 21:12:26 2019

oo o o oo o b o oo o o o o o o ok o oo

Type of Check Total Met Violated Untested
setup 1029 1004 (98%) 24 (2%) 1 (0%
hold 1029 1028 (100%) 0 (0%) 1 (0%
recovery 54 54 (100%) 0 (0%) 0 (0%
removal 54 54 (100%) 0 (0%) @ (0%
min_pulse width 739 685 (93%) 0 (0% 54 (7%)
out_setup 32 32 (100%) 0 (06%) @ (0%)
out_hold 32 32 (100%) 0 (0%) @ (0%
ALl Checks 2969 2889 (97%) 24 (1 1%) 56 [2%)

1

As shown in the report above, there are 24 setup violations in the design. This indicates
there are 24 timing paths where the capture flip-flop does not meet its setup timing.

To get the worst violator or critical path, type:
report_timing

This will generate a report like this:

Startpoint: s3_opl_reg_3_

(rising edge-triggered flip-flop clocked by clk)
Endpoint: s4_op2_reg_30_

(rising edge-triggered flip-flop clocked by clk)
Last common pin: bufbdfG3BlIl_1/Z
Path Group: clk
Path Type: max

Point Incr Path
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 0.82 0.82
s3_opl_reg_3_/CP (sdnrqg2) 0.00 0.82 r
s3_opl_reg_3_/Q (sdnrqg2) 0.34 1.16 f
s4_op2_reg 30 /D (sdnrgd) 5.96 7.12 r
data arrival time 7.12
clock clk (rise edge) 6.00 6.00
clock network delay (propagated) 0.77 6.77
clock reconvergence pessimism 0.01 6.78
s4_op2_reg_30_/CP (sdnrg4) 6.78 r
library setup time -0.19 6.59
data required time 6.59
data required time 6.59
data arrival time -7.12
slack (VIOLATED) -0.53

(Note: the report above has been truncated)

The critical path has a negative slack of 0.53. This indicates the flip-flop, s4_op2_reg_30_
failed to meet its setup time by 0.53ns.

Let’s save the critical path start point and end point as variables. We can use this later on for
comparison. Type:

set start "s3_opl_reg_3_/CP"

set end "s4_op2_reg_30_/D"

You can get the same report as above by typing:

report_timing -from $start -to Send

As you modify any design constraints or change the netlist, the critical path will change. If we
want to compare the timing for the same path with different constraints being applied, using
variable to store the start/end points is a very convenient way.

To find out all the violations in the design, type:

report_constraints -all

This will generate the following report:

max_delay/setup ('clk' group)

Endpoint Slack

s4_op2_reg (VIOLATED)

D
sd_op2_req ‘D (VIOLATED)
sd_opl_reg ‘D (VIOLATED)
s4_op2_reg_25_ /D (VIOLATED)
s4_op2_reg 27 _/D (VIOLATED)
s4_opl_regq 23 /D (VIOLATED)
sd_opl_reqg_ D (VIOLATED)
sd_op2_reg_29 (VIOLATED)

(VIOLATED)
(VIOLATED)
(VIOLATED)
LATED)
IOLATED)
(VIOLATED)
(VIOLATED)
(VIOLATED)
(VIOLATED)
(VIOLATED)
(VIOLATED)
(VIOLATED)
IOLATED)
IOLATED)
(VIOLATED)
(VIOLATED)

£l

s4_op2_reg_18_/

This report shows the endpoints of the path which are violating our timing constraints. This
number is consistent with data given by report_analysis_coverage. If there are other
categories of violation, that too will be shown by report_constraints.

To generate a report for checking hold time constraints, type:

report_timing -delay min

Startpoint: operation[0]
(input port clocked by clk)
Endpoint: s4_op2_reg 5_
(rising edge-triggered flip-flop clocked by clk)
Path Group: clk
Path Type: min

Point Incr Path
clock clk (rise edge) 0.00 0.00
clock network delay (propagated) 0.00 0.00
input external delay 1.00 1.00 f
operation[0] (in) 0.02 1.02 f
s4 op2 reg 5 /SD (sdnrql) 0.00 l1.02
data arrival time 1.02
clock clk (rise edge) .00 0.00
clock network delay (propagated) 0.81 0.81
clock reconvergence pessimism 0.00 0.81
s4_op2_reg 5_/CP (sdnrql) 0.81 r
library hold time -0.06 0.75
data required time 0.75
data required time 0.75
data arrival time -1.02
slack (MET) 0.27

As shown in the above report, the path has a positive slack of 0.27, which means there is no
hold time violation in this design.

In a typical chip design process, when you encounter any timing violations, you will need to
debug the cause of the violations — there are numerous reasons for this:

e Poor design partitioning

e Incorrect constraints

e Missing constraints

e Poor RTL design

e Non-optimal placement of cells, ports or macros

e Path requires more than one clock cycle for data to go through (multicycle path)

and many more. We will fix the violation in a later task. For now, let’s continue with our
analysis.

The design above was analyzed using wire load model, which is statistical way of calculating
net and cell delays based on net fanout. This method is not suitable for DSM designs. The
proper way of analyzing timing is by using extracted capacitance and resistance data from
your layout design. From the PnR tool (IC Compiler), you can write out a SPEF file, which
contains extracted net capacitance and resistance based on the actual routing being done on
the design. This SPEF file when back-annotated into PT, provide a very accurate way to
calculate cell and net delays which closely matches actual silicon data.

For this lab, the SPEF file is located in the netlist directory. To back annotate the parasitic
file, type:

read_parasitic netlist/DOLPHIN.spef

You will get the following output after executing the above command:

0 error(s)
Format is SPEF

Annotated nets : 5037
Annotated capacitances : 78114
Annotated resistances : 74264
Reduced coupling capacitances : 48237
Annotated PI models : €]
Annotated Elmore delays : €]

The above report shows that the SPEF file was successfully back-annotated. To check the
quality of the annotation (i.e if there are missing annotations), type:

report_annotated_parasitics

which will generate the following report:

| | | | RC | Not |

Net Type | Total | Lumped | RC pi | network |Annotated|
———————————————————— e T e TR E T
Internal nets | | | | | |
- Pin to pin nets | 4932 | 0 | 0 | 4932 | 0|

- Driverless nets | 1| 0 | 0 0| 1]

- Loadless nets | 0| 0 | 0| 0| 0|
———————————————————— e L e R TR PR R T
Boundary/port nets | | | | | |
- Pin to pin nets | 165 | 0 | 0 | 105 | 0 |

- Driverless nets | 0| 0| 0 0| 0

- Loadless nets | 0| o | 0 0| 0|
———————————————————— e T e P L TR PR R T
| 5038 | 0 | 0| 5037 | 1]

The report shows that all nets have back-annotated data on it.

Run the command report_analysis_coverage. What type and number of violations are there
in the design?

Type of violation: setup
Number of violations: 42

How does this compare with your pre-annotation report? Are there more or less violations
now? More violations now.

Run the report_timing command to answer the following questions:
What is the slack?

-0.96

How does the slack compare with the previous report?

Its worse than before (-0.96 vs -0.53)

Are the start and end-points the same as before?

No. The critical path has changed. Now its:

start point: s3_op2_reg_20 /CP

end point: s4_op2 _reg 25 /D

What command will you run to generate a timing report for the same start and end point as per the
pre-annotated report? How is the slack compared to pre-annotated results?

report_timing -from Sstart -to Sfinish
The slack is -0.88 which is worst compared to the pre-annotated value of -0.53.
Provide one reason why the pre-annotated report varies compared to post-annotated report?

Post-annotated design has more accurate R & C values which can be worse then the estimated
values provided by the wire-load models used in the pre-annotated design.

You can use "report_qor" to check the summary of report timing, area, and power

6. Debug
Let’s take a more detailed look at the critical path. Generate the following report:
report_timing -nets -capacitance -input_pins

This will add two extra columns in the timing report showing the fanout for the cells in the
path and also the net fanout. Shown below is partial section of the timing report:

s4_add_189 plus_plus_U60/ZN (xn02dl) 0.27 & 2.69 f
n7069 (net) 1 0.02

s4 mul_189 mult_mult_ULG68/I (invbd4) 0.00 & 2.69 T
s4 mul_189 mult_mult_ULGEB/ZN (invbd4) 0.15 & 2.84 r
s4 mul_189 mult_mult _nl91l3 (net) 13 0.13

s4 mul_189_mult_mult_U54/A1 (nr02d0) 0.00 & 2.84 r
s4 mul 185 mult _mult US4/ZN (nro2d0) 0.18 & 3.02 f

As can be seen from the report, the largest fanout is 13, but resulting delay is only 0.15ns for
the cell, which is relatively small. Trying to fix the timing by inserting buffer or upsizing cells,
won’t help much in this case. To fix this setup violations, you can try the following:

1. Modify the source code to reduce the path length and redo the synthesis
and PnR — but this will take a long time

2. Try re-doing the PnRin IC Compiler

3. Reduce the clock frequency (increase the clock period)

4. Specify the long path as multicycle paths — giving more than once cycle
between launch and capture flip-flops.

For this exercise, we use option 4 i.e. specifying multicycle path constraints. To specify
multicycle path constraints, we need to know the endpoint names of the capture flip-flops.
This can be obtained by running:

report_constraints -all

You will get the following report:

Endpoint Slack
s4 op2_reg 25 /D -0.96 (VIOLATED
s4_op2_reg_28 /D -0.95 (VIOLATED
-0.95 (VIOLATED
.95 (VIOLATED
-0.94 (VIOLATED
-0.94 (VIOLATED
-0.93 (VIOLATED

s4_opl_reg_27_/D
s4_opl_reg_23_/D
sd4 op2 reg 30 /D

s4 opl reg 30 /D

s4_op2_reg_31_/D

s4_opZ_reg_27_/D -0.92 (VIOLATED
s4_op2_reg_20_/D -0.,91 (VIOLATED
s4 op2 reg 22 /D .89 (VIOLATED

s4_op2_reg_29 /D -0.89 (VIOLATED

s4_opl_reg_25_/D -0.87 (VIOLATED
s4 _opl_reg_28_/D -0.85 (VIOLATED
s4_op2_reg_23_/D -0.85 (VIOLATED
s4_opl_reg_26_/D -0.84 (VIOLATED
s4 op2_reg 24 /D -0.82 (VIOLATED
s4_opl_reg 22 /D -0.81 (VIOLATED
s4_op2_reg_l18_/D -0.80 (VIOLATED
s4 _opl_reg_29 /D .79 (VIOLATED
s4

s4 opl reg 21 /D -0.75 (VIOLATED

s4_op2_reg_ 19 /D .75 (VIOLATED

s4_opl_reg_24_/D .72 (VIOLATED
s3_opl_reg_31_/D -0.71 (VIOLATED
s4 opl_reg 31_/D -0.71 (VIOLATED
s4_opl_reg_18_/D -0.71 (VIOLATED
s4_opl_reg_19_/D -0.71 (VIOLATED
s4_opl_reg_20_/D -0.68 (VIOLATED
s4_op2_reg_21_/D -0.68 (VIOLATED
s4 opl reg 17 /D -0.62 (VIOLATED

s3_opl_reg_36_/D -0.50 (VIOLATED
s4 op2 reg 17 /D -0.45 (VIOLATED
s4_op2_reg_l16_/D -0.38 (VIOLATED
s3_op2_reg_31_/D -0.37 (VIOLATED
s4 _opl_reg_16_/D -0.36 (VIOLATED
s3 opl_reg 29 /D -0.34 (VIOLATED
s4_op2_reg_15_/D -0.23 (VIOLATED
s3_op2_reg_30_/D -0.15 (VIOLATED
-0.14 (VIOLATED

0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
_ ©)
_ -0)
op2_reg_26_/D -0.,77 (VIOLATED)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)
0)

s4_op2_reg_l4_/D

Using the information above, together with the pattern matching *(match multiple
characters) and ?(match one character), we can constrain the design for multicycle path.
Note that multicycle path constraints should only be applied to the specific endpoints and
not just on any path. Type the following constrain to give these paths 2 cycles for data to go
through from the launch point to capture point:

set_multicycle_path -setup 2 -to [get_pin "s?_* reg_*/D"]
set_multicycle_path -hold 1 -to [get_pin "s?_* reg_*/D"]

To verify this indeed can fix the setup violations, rerun the following reports:
report_analysis_coverage

report_constraints -all

pt_shell= report _analysis coverage

0 o A o A o o e o o o o o o o o o o o o o o o o o o o e o o e o e o o o b e
Report : analysis coverage

Design : DOLPHIN

Version: 0-2018.06-5P2

Date 1 Sat Jan 26 11:23:57 2019

S o o e S ke e S o e e o e s S o e S e e e s e e s e e o e e e e e e

Type of Check Total Met Violated Untested
setup 1629 1028 (100%) G (0%) 1 [0%)
hold 1629 1028 (100%) G (0%) 1 [0%)
recovery 54 54 (1006%) o[0%) o[0%)
removal 54 54 (100%) o (0% G (0%)
min_pulse width 739 685 (93%) 0 (0%) 54 (7%)
out_setup 32 32 (106%) G (06%) G (06%)
out _hold 32 32 (106%) G (06%) G (06%)
A11 Checks 2969 2913 (98%) G (0%) 56 [2%)
1

pt_shell= report _constraints -all
0 o A o A o o e o o o o o o o o o o o o o o o o o o o e o o e o e o o o b e
Report : constraint
-all _violators
-path slack_only
Design : DOLPHIN
Version: 0-2018.06-5PZ2
Date : Sat Jan 26 11:24:03 2019

e e e e b e s e e s o b s o b b b b e o e o o e e e o e e o e e o ke e ook e ook

A blank constrain reports indicated no violations

The design now has no violated timing constraints and can be taped-out.
This completes STA lab. Exit PrimeTime, at the pt_shell prompt, type: exit
In this lab, you have seen how to:

Read a design into PrimeTime
Constrain a design for timing
Run timing analysis

P wnNPR

Debug a timing problem.

