
1 
 

Fakulti:                      FAKULTI KEJURUTERAAN ELEKTRIK 

 Semakan                     : 1 

Nama Matapelajaran:  MAKMAL PBL TAHUN 3 
 

Tarikh Keluaran          : 2020 

Kod Matapelajaran  :   SKEL 3742 
 

Pindaan Terakhir         : 2020 

 No. Prosedur                : PK-UTM-FKE-(0)-10 

 

 

 
 
 

SKEL  
3742 

 
 

 

SEKOLAH KEJURUTERAAN ELEKTRIK  

UNIVERSITI TEKNOLOGI MALAYSIA  

KAMPUS SKUDAI  

JOHOR 
 
 
 

VLSI SYSTEM DESIGN 
LABORATORY (VLSI DESIGN) 

 

 

Pre – Lab : IC Design Flow  
 

Prepared by     : Certified by    : 

Mr. Izam bin Kamisian P.M. Dr. Ir. Rubita binti Sudirman 

Dr. Muhammad Afiq Nurudin bin Hamzah (Head of ECE Department) 

Dr. Shahidatul Sadiah binti Abdul Manan  

 
Signature         : 
 

Signature        : 

Stamp              : Stamp             : 

Date                 :    9  February 2020 Date                : 9 February 2020 

5th May 2020



2 
 

Task 
 
In this lab, we will be using four Synopsys tools to design an integrated circuit (IC), 

which are: 

1. Verilog Compiler and Simulator (VCS) for circuit design verification. 

2. Design compiler (DC) for synthesis. 

3. IC Compiler (ICC) for place and route. 

4. Prime Time (PT) for static timing analysis (STA). 

 

  The complete design flow is shown in Figure 1 below: 

 

 

 
 

Figure 1: Complete IC Design Flow 

 

 

For prelab, you are required to go through the tasks for all four tools before coming to 

the in-lab session and submit the answers for all the questions in the first lab session.    



Verification Lab 

 

Task 1 

In this lab, you will run a basic verilog simulation using Synopsys VCS. This simulation exercise will 

use VCS's graphical user interface tool called DVE. The design used is a simple 4-bit adder. 

Go to directory task1 

cd    ~/lab_work/verification/task1 

Use the "ls" command to view the files in this directory. You should find two files: adder.v (design 

file) and test_adder.v (testbench file) 

Run VCS to check if your verilog files have any syntax errors: 

vcs    adder.v 

On your screen, you will see the VCS copyright information, followed by various compile log 

information. Look for the message that says "../simv is up to date": 

 

This indicates your design does not have any syntax errors and is ready for simulation. 

Now lets check the testbench.  Since the testbench instantiates the adder, we need to compile both 

files: 

vcs    test_adder.v   adder.v 

Did you get the message "../simv is up to date",  if yes, then both files have no syntax errors. We will 

see how to fix syntax errors in the next lab. For now, lets run the simulation. To simulate the design: 

vcs    -R   -gui   -debug_all   test_adder.v   adder.v 

The "-R" option tells VCS to run the simulation after compilation, while the "-gui" option invokes DVE, 

the graphical interface. The debug_all option allows for source tracing. Wait for DVE gui to appear. 

You will get the following window: 

 

 

 

 

 



 

Right click on the Testbench module (test_adder) under the hierarchy pane, and select Add to 

Waves - New Wave View as in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This will launch the waveform viewer, and load all the signals (ports, signals) into it. There is no 

waveform value yet, as the simulation has not been run. 

Run the simulation by clicking on the RUN button 



You can click on the run button on either the waveform window or the main DVE gui - both perform 

the same operation. This action will cause the simulation to run until completion. You will see the 

waveform displayed on the wave window.  

Use the zoom in button on the toolbar to get a closer look. Click on the zoom in button a few times. 

zoom out (2x) button 

 

Then using the scroll bar at the bottom of the wave window, scroll to the beginning of the waveform. 

 

 

Scroll to the beginning. Move the scroll bar to this position. 

Look at the waveform values. Do they match your expected value for an adder? 

The values displayed for the bus signals ( in1, in2, sum) is in hex. You can change the default radix to 

decimal (or binary or octal) by following this step: 

Select the signal  "sum".  Right click on it, and select Set Radix - Decimal. 

 

 

 

 

 



Repeat the above steps for the signal "in1" and "in2". Check the output value to see if its correct - it 

should be.  

Next we will see how to use source code tracing. That is to see your code execution sequence. 

Arrange the windows so that you are able to see both of them, some overlap is fine.  

 

Make sure you are able to see both windows. 

On the main DVE gui, click on Simulator - Start/Continue. This brings the simulator back to time 0, 

the starting point. Notice that the waveform has cleared. Look at the source code window. Lets see 

what the execution sequence of your code is.  Click on the Next button a few times: 

The yellow arrow on the source code shows the current execution line. At the same 

notice that the waveform appears on the wave window. You may want to zoom in.  

Continue clicking the Next button a few more times - do you see the sequence of your code 

execution? Based on your design knowhow, you should be able to deduce if the execution is correct 

- in this case it’s correct. You can hit the Run button (the down arrow) to complete the simulation 

run. 

This is how you verify a simple design. More complex designs will require advance verification 

techniques such as using assertions and native testbench constructs.  

Now exit the simulator, Left click on File, then choose Exit  and followed by OK. 

This completes Task 1. 

 

 

  



Task 2 

In this lab, you will run a basic verilog simulation using Synopsys VCS. This simulation exercise will 

use VCS's shell (command line) interface. The same design from Task 1 is used here. 

Go to directory task2 

cd    ~/lab_work/verification/task2 

Use the "ls" command to view the files in this directory. You should find two files: adder.v (design 

file) and test_adder.v (testbench file) 

Check the adder file for syntax errors. Type: 

vcs  adder.v 

Did the design compile successfully? ________ 

VCS returns an error message like this: 

 

This indicates a syntax error in your adder source file. The message  "adder.v", 4: indicates the file 

and line number where the error might have occurred. In general, the error might occur on the 

specified line or one line above. Can you tell what the error is?_________________ 

The word “output” is spelt wrongly. It should be "output" and not "ouput". 

Open the file, adder.v in a text editor (gedit), type: 

gedit   adder.v 

Fix the error and save the file. Exit gedit when done. 

Now recompile the design again: 

vcs   adder.v 

The compilation should complete successfully with the message:  

../simv  up to date 

Now check the testbench file: 

vcs   test_adder.v  adder.v 

Seems like more errors are detected.  You should get the following message: 



 

The cause of this error is the testbench file, test_adder.v. Based on your knowledge of verilog, fix 

this error using the same method as above, then recompile the design. 

Do not continue until you have fixed all errors, and compilation completes successfully.  

The testbench contains self-checking constructs.  Run the simulation using the command shell: 

vcs     test_adder.v    adder.v   -R    -l    run.log 

The option "-l"  thats small "L", captures all the output to a log (text file) called run.log. Once 

simulation completes, use gedit to open the  run.log file: 

gedit  run.log 

Browse through the file. Are the results correct? _______. It should be.  Notice the message 

"Simulation Completed Successfully". This is the message from the testbench indicating that the 

simulation run has completed with no functional errors i.e. NO BUGS! 

Now we will create a functional error in the design adder. Functional errors are caught during 

simulation run, and the cause of the error is found during debug. Syntax errors are found during 

compilation.  

Our design is an adder, buts let change the function to that of a subtractor. In the file, adder.v, 

change the "+" to a "-" sign:  

from:  assign sum = in1 + in2; 

to:  assign sum = in1 - in2; 

Use gedit to make the above change and save the file. Now rerun the simulation: 

vcs     test_adder.v    adder.v   -R    -l    run.log 

Once the simulation completes, open the log file, run.log with gedit, and look at the output. Notice 

all the error messages: 

 

 



 

The above is a simple example of a self-checking testbench. Self-checking testbench is a better way 

to verify complex designs.  

In this lab, you have seen how to fix syntax error and run the simulation using the shell (no GUI) by 

using self-checking testbench. 

This completes VCS lab. 



Design Compiler (DC) Synthesis Lab 

 

Task 1 

 

In this lab you will perform logic synthesis operation on a Verilog source code using Synopsys 

Design Compiler (DC). Logic synthesis optimizes and converts your RTL design into a Gate-

level netlist.  

 

Go to directory task1 under the lab_work/synthesis/task1 directory: 

 

cd   ~/lab_work/synthesis/task1 

 

List down all the directories/files under the current directory: 

 

ls 

 

The directory lib contains the standard cell technology library required for synthesis. The 

source directory contains the Verilog source files that will be synthesized. Note that for 

synthesis, we don’t require the testbench. 

 

1. DC Setup 

Before we can start using DC, we will need to create a setup file that specifies the standard 

cell library that we are going to use and its location. Using gedit, create a file called 

".synopsys_dc.setup" (note: there is a  "." at the beginning of the file name). 

 

gedit   .synopsys_dc.setup 

 

Add the following library settings to the file: 

 

set   search_path     "$search_path    ./lib" 

set   target_library   "saed90nm_max_pg.db" 

set   link_library        "  *    $target_library" 

set   symbol_library    "generic.sdb" 

 

 

Save the  ".synopsys_dc.setup" and exit gedit. 

 

  



2. Read & Link Design 

 

Launch the DC GUI, Design Vision (DV), at the terminal type: 

 

design_vision  

 

Locate the DV command prompt at the bottom of the DV window:  

 
 

Here you can type in any DC commands. We will now verify that your library settings in the 

".synopsys_dc.setup" file was applied correctly. Type: 

 

printvar     search_path 

 

This will print to the screen all the search path that DC will look into to find files and 

libraries. Ignore the first few paths - they are the system wide default path which you should 

not modify. Look towards the end - do you see the library path:  ./lib ? 

If yes, proceed to the next step, else quit DV (File - Exit - OK), and change the search_path 

setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup". 

 

Type: 

 

printvar    target_library 

 

You should get:   

target_library       = "saed90nm_max_pg.db" 

 

if you did not get the above setting, quit DV (File - Exit - OK), and change the target_library 

setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup". 

 

Type 

 

printvar   link_library 

 

You should get: 

link_library         = "  *  saed90nm_max_pg.db" 

 

if you did not get the above setting, quit DV (File - Exit - OK), and change the link_library 

setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup". 

 

Finally type: 

 

printvar   symbol_library 

 



You should get: 

symbol_library       = "generic.sdb" 

if you did not get the above setting, quit DV (File - Exit - OK), and change the symbol_library 

setting in the ".synopsys_dc.setup" file as per the specification in "1. DC Setup". 

 

If you got the results as above, your library setting is correct, we can then proceed to read in 

the design.  Click on the Read icon: 

 

 

Double Click on the Source directory, and select the file, counter.v and then click on Open. 

This will load the RTL design into DC's memory. In the Logical Hierarchy pane, select the 

design, counter: 

 

 

 

 

 

 

To view the block diagram of the design, click on the "Create Schematic of Selected Objects" 

toolbar icon:   

You can also right-click on the “counter” design in the Logical Hierarchy pane and select 

Schematic View. Press the “F” key to zoom fit the view or use the zoon icons on the toolbar.  

This will show the block diagram, with the input ports on the left, and output ports on the 

right. Can you identify the 4 input and one output port? 

 

________________________________________________ 

 

________________________________________________ 

 

Block View: 

 
 

What is the size (number of bits) of the output port?_____________________ 

 

You can also get the schematic view of the RTL code – double click on the Block Diagram 

view of the Counter design 

 

Select this design (when 

selected, its highlighted!) 



This is view of the unmapped RTL netlist: 

 
 

 

3. Design Constraints 

 

Next step is to apply design constraints. For this design we will apply the following sets of 

constraints: 

 

1. Get the smallest possible design 

2. Clock period of 5ns 

3. Clock transition of 0.5ns 

4. Input delay of 1ns 

5. Output delay of 1ns 

6. Output load of 0.001pf 

7. Input transition (for all inputs except clock): 0.8ns 

The constraints are written using TCL syntax. Type the following in DV command prompt: 

set_max_area     0 

create_clock   -period  5    [get_port    clk] 

set_clock_transition   0.5    [get_clock   clk] 

set_input_delay   1    -clock   clk    [get_port    "rst   en   load"] 

set_output_delay 1   -clock   clk   [get_port   cout] 

set_load   0.001    [get_port   cout] 

set_input_transition   0.8    [get_port   "rst  en  load"] 

 

When you type in any of the above command, DV will return a value of "1" like this: 



 

A return value of "1" indicates the command as has been successfully accepted by DC. If you 

make any mistakes, just retype the command again. 

Next step is to optimize the design. 

 

4. Optimize Design 

We will now optimize and map the design to cells from the target library. To do that, click on 

Design - Compile Design - Ok. Do not change any setting in the dialog box.  

Wait until optimization completes. You will get the following message in DV's log window: 

 

Notice how when the optimization completes the design hierarchy view is cleared. Click on 

Hierarchy – New Logical Hierarchy View to load the compiled (mapped) design.  

Take a look at the design schematic again. Right Click on counter design under the Logical 

Hierarchy pane and choose Schematic View. Double click on the Block View to get the 

Schematic View. Notice how the schematic view has changed. The design is now composed 

of gates from your target library. 

5. Save the Design 

Once optimization has completed, we can save the design and other related data for the 

next stage in the IC design process (layout). 

To save the netlist as binary (DDC) file, at DV command prompt, type: 

write    -f   ddc    -hierarchy   -out     ./netlist/counter.ddc 

To save a Verilog netlist, type: 

write    -f   verilog    -hierarchy   -out     ./netlist/counter.v 

We also need to write out our design constraints in a format called SDC: 

write_sdc    ./netlist/counter.sdc 

Now we need to analyze the design to see if we have met our design constraints (area & 

timing). For that we need to generate reports. 



 

6.  Analyze Design 

To get the area of your design, type:   report_area 

Take a look at the last two lines:  

Total cell area:           236.838003 

Total area:                244.004085 

The total area includes the cell and wire(net) area. The numbers for your design might vary 

slightly! 

To get a clock report, type:  report_clock 

What is the clock period?  _________ 

Does it match your design constrain? __________. It should! 

Type:  report_clock    -skew 

What is the clock transition? __________. It should! 

Generate a timing report, type:   report_timing 

You will get the following report: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take a look at the slack value. Your number maybe slightly different from the above (1.06). 

However it should be a positive value. A positive slack value (MET) indicates that you have 

met your timing constraints. A negative slack value (VIOLATED) indicates a timing constraint 

failure.  A timing failure will require re-optimizing the design or changing the source code.  

Quit DV, click on  File - Exit - OK. 

This completes task 1. Proceed to the next task. 

  

Launch Path 

Capture Path 



Task 2 

In this lab, you will perform synthesis using DC shell interface i.e. the most common way of 

doing synthesis. You will create a script file containing all the design constraints and another 

command script file to run the synthesis process in batch mode. 

Perform all task under the task2 directory:  

cd ~/lab_work/synthesis/task2  

The ".synopsys_dc.setup" has already been created with the necessary library and path 

settings.  To run in batch mode, we will need two files - constraints and command file. Lets 

create the constraints file first. Type the following: 

gedit   scripts/constraints.tcl 

Add in the following constraints to the script file: 

set_max_area     0 

create_clock   -period  5    [get_ports    clk] 

set_clock_transition   0.5    [get_clocks   clk] 

set_input_delay   1    -clock   clk    [get_ports    "rst   en   load"] 

set_output_delay 1   -clock   clk   [get_ports   cout] 

set_load   0.001    [get_ports   cout] 

set_input_transition   0.8    [get_ports   "rst  en  load"] 

 

These are similar constraints to task 1. Save the file and exit gedit. The file will be saved to 

the scripts directory. Check to see if the file has any syntax errors, at terminal, type: 

 dcprocheck    scripts/constraints.tcl 

 If you get any errors, its due to typos, refer to the above constraints, and fix the errors. 

Make sure you get no errors before proceeding to the next step.  If there are no errors, 

dcprocheck will return the following message: 

 

Now create a command file, which will read in the design, apply the constraints, compile the 

design, generate reports and exit the tool.  

gedit    scripts/run.tcl 

(you can use gedit or any text editor of your choice) 



Add in the following commands to the  script file: 

 

 

read_verilog   source/counter.v 

link 

source   scripts/constraints.tcl 

compile 

write -f  ddc  -hierarchy   -out  netlist/counter.ddc 

write -f  Verilog  -hierarchy  -out  netlist/counter.v 

write_sdc  netlist/counter.sdc 

redirect -file reports/area.rpt  { report_area  } 

redirect -file reports/timing.rpt  { report_timing } 

redirect -file reports/clock.rpt   { report_clock } 

redirect -file -append  reports/clock.rpt  { report_clock  -skew } 

exit 

 

Save the file and exit gedit. The file will be saved to the scripts directory. Check to see if the 

file has any syntax errors, at terminal, type: 

 dcprocheck scripts/run.tcl 

Script commands summary: 

• read_verilog/link: Read in the design, and checks to ensure design is loaded properly 

• source:  read in constraints file, and applies the constraints to the current design 

• compile: optimizes and maps the design to the target technology  

• write: saves design netlist 

• write_sdc: saves design constraints file (SDC) 

• redirect  -file: redirects the specific command output to a file instead of the screen. 

Now run the synthesis process in batch mode, type: 

 

dc_shell   -f scripts/run.tcl   |tee  dc.log 

 



Note:  | is the pipe character (typically above the return/enter key). 

The above command will invoke dc_shell, which is the shell interface program for DC, and 

execute the commands in the file run.tcl.  All the output to screen is also captured in the log 

file dc.log.  

Once the synthesis process completes, use gedit to view the file, dc.log: 

gedit   dc.log 

Check to see if log contains any "Error". If you have, fix it - its probably caused by typos.  

Then use gedit to view all the report files in the reports directory. 

 

What is the total area: __________ 

What is the clock transition time? __________ 

Is the timing slack positive or negative? __________ 

Did you meet your timing constraints? __________ 

 

This completes task 2.  Continue to the next task. 

 

  



Task 3 

In this task, you will have to perform the synthesis task based on the given specification. You 

can use Design Vision or dc_shell to perform the synthesis operation.  

Following are the specifications of the design: 

Design name detector 

File name source/detector.v 

Target library syn90nm_slow.db 

Link library *   syn90nm_slow.db 

Symbol library generic.sdb 

Library path lib 

  

Clock period 2ns 

Input delay 0.2ns 

Output delay 0.1ns 

Clock transition time 0.01ns 

Input signal transition time 0.1ns 

Output capacitance 0.005pf 

Area goal smallest possible size 

 

Based on the above specification, your task is to: 

• Create a ".synopsys_dc.setup" file with the appropriate library and path settings. 

• Create a constraints file with the name  detector_cons.tcl. 

• Create a command file with the name run_detector.tcl that does the following: 

• Reads in the design 

• Applies the above constraints via detector_cons.tcl 

• Optimizes the design 

• Generates a timing, area, cell and clock report which must be saved to the reports directory 

• Write out  a Verilog netlist and save it to the netlist directory 

• Write out a DDC file and save it to the netlist directory 

• Generates SDC file and saves it to the netlist directory 

• Exit DC/DV when done. 

• All DC run commands and outputs must be capture in a log file. 

When done, you will need to hand-over the following files to your lecturer: 

• .synopsys_dc.setup 

• run_detector.tcl 

• detector_cons.tcl 

• Area report 

• Timing report 

• Cell report 

• Clock report 

• Synthesis run log 

Does your design meet its timing constraints? __yes_. What is the slack? __0.091__ 

This completes task 3. In the next lab, we will cover how to do layout (PnR). 

Thank you 



Physical Implementation Lab 
 
In this lab you will perform physical implementation operation on a netlist using Synopsys IC 
Compiler (ICC). Commonly called place & route (or pnr), physical implementation task takes 
in a gate-level netlist and converts it into a physical layout that can be sent for IC fabrication.  
 
Go to directory task1 under the lab_work/pnr directory: 
 
cd   ~/lab_work/pnr 
 
List down all the directories/files under the current directory: 
 
ls 
 
The directory ref contains the standard cell technology library required by ICC. The netlist 
directory contains the gate-level netlist file (ORC.ddc) in DDC format. This file was generated 
by Design Compiler using the “write -f ddc …” command.  Do all your work from the pnr 
directory.  
 
1. ICC Setup 
Before we can start using ICC, we will need to create a setup file that specifies the standard 
cell library that we are going to use and its location. For this lab the setup file, 
".synopsys_dc.setup" (note: there is a  "." at the beginning of the file name) is provided for 
you. This is the same file that is used by Design Compiler but now we have additional 
libraries specified in it.  
Using gedit, view the contents fo the “.synopsys_dc.setup” file. DO NOT MODIFY THIS FILE! 
 
gedit   .synopsys_dc.setup 
 
Browse through the file to view the physical library i.e. Milkyway settings. When done, exit 
gedit. 
 

  



2. Read Design 
 
Launch ICC in shell mode, open a terminal and type:  
 
cd   ~/lab_work/pnr 
icc_shell 
 
At the ICC command prompt, read in the DDC netlist from the netlist directory, type: 
 
import_design -format ddc -top ORC ./netlist/ORC.ddc 
 
Next, tie all the power pins of the gates in the netlist to the power nets, VDD and VSS: 
 
derive_pg_connection -power_net VDD -power_pin VDD   -ground_net VSS  -ground_pin VSS 
derive_pg_connection -power_net VDD  -ground_net VSS -tie 
 
For the next step, we will use the GUI, at the ICC prompt, type:  
start_gui 
 

 
 
You will get the ICC GUI. There will be two windows – ICC Main window and Layout window.  

 
 



You will do your work from the Layout window. Make that window the active window on 
your desktop. 

 
 
3. Floorplan 
 
Next up is floorplan. Here is where we specify the die area, pin arrangement and power 
network.  
From the Layout window menu bar, Click Floorplan – Create Floorplan. Specify the values as 
shown in the image below:  
 

 

Click OK.  

All the logic cells that are part 
of the design 



 
Your Layout window will look similar to this:  
 

 
 
Before we can move all the cells in, we need to create the power (VDD) and ground (VSS) 
rings (supply network). Click Preroute – Create Rings. Key in the values as shown in the 
image below:  
 

cell 
placement 
area (die) 

cell to be  
placed 

within die 

Input/Output  
pins 



 
 
Click OK. 
The Layout window should look like this: 
 



 
 
Using the magnifier icon on the toolbar, zoom into the rectangle area to have a closer look. 

 
 
Click on zoom in tool, and draw a rectangle around the die area to zoom in.  The zoomed in 
view in shown below: 

 
 
 
Once the rings hanve been created, we will create the power straps. Make the Main Window 
the active window now (bring it to the forefront). At the icc_shell prompt, type in the 
following command:  
 

VDD & VSS core 
rings 

Standard cells that 
will moved into die 

(core) area next 



create_power_straps  -direction horizontal  -nets  {VDD VSS}  -layer METAL4 -width 20              
-configure step_and_stop  -step 250 -stop 350 

 
The above command will create the power straps on metal layer 4, as shown in the image 
below: 
 

 
 
Back in the ICC prompt, key in the following commands: 
 
set_pnet_options -complete {METAL3 METAL4} 
derive_pg_connection  -power_net VDD  -power_pin VDD  -ground_net VSS  -ground_pin VSS 
derive_pg_connection -power_net VDD  -ground_net VSS -tie 
create_fp_placement -timing_driven -no_hierarchy_gravity 
 
This will move all the standard cells into the core area. See figure below: 
 

Type the above 
command in here 

Power Straps 



 
 
Final step under floor-planning would be to route all the power nets (VDD, VSS), type the 
following command:  
 
preroute_standard_cells  -remove_floating_pieces 
 
We are now ready for cell placement (within die) and optimization.  
 
4. Placement 
Lets optimize the placement of the cells within the die area, type the following commands:  
 
place_opt 
derive_pg_connection  -power_net VDD  -power_pin VDD  -ground_net VSS  -ground_pin VSS 
derive_pg_connection -power_net VDD  -ground_net VSS -tie 
 
 
5. Clock Tree Synthesis (CTS) 
CTS builds a buffer tree for the clock network, to enable the clock signal to drive multiple 
flip-flops with degrading the signal strength. Type the following commands: 
 
remove_clock_uncertainty [all_clocks] 
clock_opt 
 

set_separate_process_options -placement false



The layout will look a little different now because of the adding in of clock buffers and 
routing of the clock nets. Try zoom/pan around the layout to view the clock routes.  
The image below shows how the clock pin is routed to a clock buffer:  

 
 
6. Routing 
Final step in the physical design process is to route the design. Type:  
 
route_opt 
 
Once completed, your routed design should look like this:  
 

 
 
Re-run the following two commands to ensure all power/ground connectivity for any new 
cells added in during the routing process: 
 
derive_pg_connection -power_net VDD -power_pin VDD   -ground_net VSS  -ground_pin VSS 
derive_pg_connection -power_net VDD   -ground_net VSS -tie 
 
Verify the design is free of any design rule violations (DRC), type:  



 
verify_zrt_route 
 
You should get the following output:  

 
 
 
Run a Layout vs. Schematic (LVS) check to ensure there are no shorts/open nets: 
 
verify_lvs 
 
The output should look like this:  

 
 
 
Now let’s check if our design meets all the timing constraints. But first we need to extract 
the parasitic in the layout (unwanted resistance and capacitance), type:   
 
extract_rc  
 
To run setup checks, type:  
report_timing  -delay max  -path short 
 
Look at the bottom of the report for the word “slack”:  
 

 
 
slack (MET) indicates you have met the setup timing constraints.  
 
To run hold checks, type:  
report_timing  -delay min  -path short 

This indicates no 
DRC violations 

This indicates no 
LVS errors 



 
Similarly, slack (MET) indicates you have met the hold timing constraints.  
 
To get an overall status of your design including timing constraints, design rules, cell count, 
type:  
report_qor 
 
Note: you can ignore any max fanout violations.  
 
Now its time to save all the data. Save your layout database in Milkyway format:  
 
save_mw_cel -as ORC_routed 
 
Save your post-layout netlist in DDC format:  
 
write -f ddc -hier -out netlist/ORC_postlayout.ddc 
 
Save your post-layout netlist in Verilog format 
 
write_verilog -no_physical_only_cells -no_core_filler_cells ./netlist/ORC_postlayout.v 

Save all the design constraints:  

write_sdc ./netlist/ORC_postlayout.sdc 

Save the parasitic information in SPEF format: 

extract_rc 

write_parasitics -output ./netlist/ORC_postlayout.spef 

The Verilog netlist and SDC/SPEF file will be used by PrimeTime to perform Static Timing 
Analysis.  

This completes ICC lab. Thank you 



Static Timing Analysis (STA) using PrimeTime Lab 

 

In this lab, you will perform Static Timing Analysis (STA) on a post-layout design using back-

annotated parasitic. Post-layout design is a design which has gone through a place & route 

process. In this lab, you will use PrimeTime (PT) to perform timing analysis on design created 

by IC Compiler.  

Once you have completed your design layout in IC Compiler, you will write out the following 

files: 

1. Design netlist in ddc or Verilog format  

2. Parasitic information in SPEF format 

3. Design constraints in SDC format (Optional) 

For this lab, we will only use the Verilog netlist and SPEF. We will specify the design 

constraints manually to PrimeTime.  

 

Go to directory  lab_work/sta_lab/ : 

 

cd   ~/lab_work/sta_lab 

 

List down all the directories/files under the current directory: 

 

ls 

 

The directory lib contains the standard cell technology library required for STA. The netlist 

directory contains the post-layout Verilog netlist files and SPEF file.  

 

1. PT Setup 

Before we can start using PT, we will need to create a setup file that specifies the standard 

cell library that we are going to use and its location. Using gedit, create a file called 

".synopsys_pt.setup" (note: there is a  "." at the beginning of the file name). 

 

gedit   .synopsys_pt.setup 

 

Add the following library settings to the file: 

 

set   search_path     "$search_path   .   ./lib" 

set   link_path        "  *   sc_max.db" 

 

 

Save the  ".synopsys_pt.setup" and exit gedit. Make sure you save the file in the 

lab_work/sta_lab directory 

 

  



2. Read & Link Design 

 

Launch PT in shell mode, at the terminal type: 

 

pt_shell  

 

 
 

Here you can type in any PT commands. We will now verify that your library settings in the 

".synopsys_pt.setup" file was applied correctly. Type: 

printvar     search_path 

printvar     link_path 

Your output should look like this:  

 

 
 

If yes, proceed to the next step, else quit PT (type: exit), and change the setting in the 

".synopsys_pt.setup" file as per the specification given above. Then redo the above steps. Do 

not continue until your setting matches the above values.  

 

Let’s read in the post-layout Verilog netlist from the netlist directory, type: 

 

read_verilog ./netlist/DOLPHIN.v 

link_design DOLPHIN 

 

Your output will look like this: 

 



The top design name is DOLPHIN. When you do “link_design DOLPHIN”, PT sets the 

current_design to DOLPHIN, and loads in all cells that make up the DOLPHIN design into PT’s 

memory. To verify the current design, type:  

current_design 

 

This should return the value, “DOLPHIN” as shown in the following figure:  

 

 

 

Since we will be doing hold analysis, we need to specify an additional library that models all 

the minimum cell delays, type:  

set_min_library sc_max.db -min sc_min.db 

 

 3. Apply Design Constraints 

Now that the design has been successfully loaded into PT, we can specify our timing 

constraints on the design. In a typical design flow, these will be the same set of constraints 

as what you would have specified in Design Compiler with some minor changes.  

Before we specify the constraints, let’s get the units that is used by PT, type:  

report_units 

 

From the resulting output, we can tell that the unit for time is ns and for capacitance is pico-

farad.  

Specify a clock period of 6ns on the input port, clk. Type:  

create_clock  -period  6.0  [get_ports clk] 

Since this is a post-layout netlist, the clock network has already been built, thus we can 

instruct PT to calculate the clock latency, skews and transition. This is done by executing the 

following command:  

set_propagated_clock  [all_clocks] 

Specify the following Interface (input and output port) timing constraints on all the ports 

except for clock port: 



set_input_delay 1.0 -clock clk  -network_latency_included \ 

  [remove_from_collection [all_inputs] [get_ports clk]] 

 

set_output_delay 2.5  -clock clk -network_latency_included  [all_outputs] 

 

Specify a load of 0.2pf on all output ports:  

set_load 0.2 [all_outputs] 

 

All the inputs except for clock is being driven by the library cell, bufbd4: 

set_driving_cell -lib_cell bufbd4 \ 

 [remove_from_collection [all_inputs] [get_ports clk]] 

  

The final constrain would be the operating condition to model all PVT effects on the design: 

 set_operating_conditions -analysis_type on_chip_variation cb13fs120_tsmc_max 

  



 

4. Constraints Validation 

Verify the clock period is set to 6ns on the port clk, type:  

report_clock 

The output should look like this:  

 

 

 

 

 

To verify input delay constraints, type:  

report_port  -input_delay 

Browse through the report, and verify it matches your constraints above. 

 

 

 

 

 

 

  

clock period 6 

unit is based on library 

which I ns 

Attribute P indicates a 

propagated clock 

Clock port 

Min and max delay as 

expected 

No constrains on the 

clock port 



To verify output delay constraints, type:  

report_port  -output_delay 

Browse through the report, and verify it matches your constraints above. 

 

 

 

 

To verify input drive, type: 

report_port  -drive 

Browse through the report, and verify it matches your constraints above. 

 

 

 

To verify the output port is set to 0.2pf, type:  

report_port  [all_outputs] 

which will give you the following details: 

 

 

 

Min and max delay as 

expected 

driving cell is bufbd4 

output port load set to 0.2pf 



Finally, to verify the operating condition and analysis type, enter: 

report_design 

You should get the following report which shows the OC is set to cb13fs120_tsmc_max 

and the analysis type is on_chip_variation. 

 

 

  



5. Timing Analysis 

Now we are ready to perform timing analysis. We will first use wire load models provided by 

the foundry libraries to calculate cell and net delays. This method is fast but is not accurate 

for deep submicron designs. However, it provides a good starting point for doing timing 

analysis as it provides a general state of the design.  

To get the overall state of the design timing, type:  

report_analysis_coverage 

 

As shown in the report above, there are 24 setup violations in the design. This indicates 

there are 24 timing paths where the capture flip-flop does not meet its setup timing.  

To get the worst violator or critical path, type:  

report_timing 

This will generate a report like this:  

 

 

(Note: the report above has been truncated) 



The critical path has a negative slack of 0.53. This indicates the flip-flop, s4_op2_reg_30_ 

failed to meet its setup time by 0.53ns. 

Let’s save the critical path start point and end point as variables. We can use this later on for 

comparison.  Type: 

set start "s3_op1_reg_3_/CP" 

set end "s4_op2_reg_30_/D" 

You can get the same report as above by typing:  

 report_timing  -from $start   -to $end 

 As you modify any design constraints or change the netlist, the critical path will change. If we 

 want to compare the timing for the same path with different constraints being applied, using  

 variable to store the start/end points is a very convenient way.  

 To find out all the violations in the design, type: 

 report_constraints  -all 

 This will generate the following report: 

  

This report shows the endpoints of the path which are violating our timing constraints. This 

number is consistent with data given by report_analysis_coverage. If there are other 

categories of violation, that too will be shown by report_constraints.  

To generate a report for checking hold time constraints, type: 

report_timing -delay min 



 

As shown in the above report, the path has a positive slack of 0.27, which means there is no 

hold time violation in this design.  

In a typical chip design process, when you encounter any timing violations, you will need to 

debug the cause of the violations – there are numerous reasons for this: 

• Poor design partitioning 

• Incorrect constraints 

• Missing constraints 

• Poor RTL design 

• Non-optimal placement of cells, ports or macros  

• Path requires more than one clock cycle for data to go through (multicycle path) 

and many more. We will fix the violation in a later task. For now, let’s continue with our 

analysis.  

The design above was analyzed using wire load model, which is statistical way of calculating 

net and cell delays based on net fanout. This method is not suitable for DSM designs. The 

proper way of analyzing timing is by using extracted capacitance and resistance data from 

your layout design. From the PnR tool (IC Compiler), you can write out a SPEF file, which 

contains extracted net capacitance and resistance based on the actual routing being done on 

the design. This SPEF file when back-annotated into PT, provide a very accurate way to 

calculate cell and net delays which closely matches actual silicon data.  

For this lab, the SPEF file is located in the netlist directory. To back annotate the parasitic 

file, type:  

read_parasitic netlist/DOLPHIN.spef 

You will get the following output after executing the above command:  



 

 

The above report shows that the SPEF file was successfully back-annotated. To check the 

quality of the annotation (i.e if there are missing annotations), type: 

report_annotated_parasitics 

which will generate the following report:  

 

The report shows that all nets have back-annotated data on it.  

Run the command report_analysis_coverage. What type and number of violations are there 

in the design?  

Type of violation: setup 

Number of violations: 42  

How does this compare with your pre-annotation report? Are there more or less violations 

now? More violations now. 

 

 

 

  

  



Run the report_timing command to answer the following questions: 

What is the slack? 

-0.96 

How does the slack compare with the previous report? 

Its worse than before (-0.96 vs -0.53) 

Are the start and end-points the same as before?  

No. The critical path has changed. Now its:  

start point: s3_op2_reg_20_/CP 

end point: s4_op2_reg_25_/D 

What command will you run to generate a timing report for the same start and end point as per the 

pre-annotated report? How is the slack compared to pre-annotated results?  

report_timing -from $start -to $finish 

The slack is -0.88 which is worst compared to the pre-annotated value of -0.53.  

Provide one reason why the pre-annotated report varies compared to post-annotated report? 

Post-annotated design has more accurate R & C values which can be worse then the estimated 

values provided by the wire-load models used in the pre-annotated design.  

You can use "report_qor" to check the summary of report timing, area, and power



6. Debug 

Let’s take a more detailed look at the critical path. Generate the following report:  

report_timing -nets -capacitance -input_pins 

This will add two extra columns in the timing report showing the fanout for the cells in the 

path and also the net fanout. Shown below is partial section of the timing report: 

 

As can be seen from the report, the largest fanout is 13, but resulting delay is only 0.15ns for 

the cell, which is relatively small. Trying to fix the timing by inserting buffer or upsizing cells, 

won’t help much in this case.  To fix this setup violations, you can try the following:  

1. Modify the source code to reduce the path length and redo the synthesis 

and PnR – but this will take a long time 

2. Try re-doing the PnR in IC Compiler 

3. Reduce the clock frequency (increase the clock period) 

4. Specify the long path as multicycle paths – giving more than once cycle 

between launch and capture flip-flops.  

For this exercise, we use option 4 i.e. specifying multicycle path constraints. To specify 

multicycle path constraints, we need to know the endpoint names of the capture flip-flops. 

This can be obtained by running:  

report_constraints  -all 

You will get the following report:  



 

Using the information above, together with the pattern matching *(match multiple 

characters) and ?(match one character), we can constrain the design for multicycle path. 

Note that multicycle path constraints should only be applied to the specific endpoints and 

not just on any path. Type the following constrain to give these paths 2 cycles for data to go 

through from the launch point to capture point:  

set_multicycle_path -setup 2 -to [get_pin "s?_*_reg_*/D"] 

set_multicycle_path -hold 1   -to [get_pin "s?_*_reg_*/D"] 

 To verify this indeed can fix the setup violations, rerun the following reports: 

 report_analysis_coverage 

 report_constraints -all 



 

 

The design now has no violated timing constraints and can be taped-out.  

This completes STA lab. Exit PrimeTime, at the pt_shell prompt, type:  exit 

In this lab, you have seen how to: 

1. Read a design into PrimeTime 

2. Constrain a design for timing 

3. Run timing analysis 

4. Debug a timing problem.  

 

A blank constrain reports indicated no violations  




