
Fakulti: FAKULTI KEJURUTERAAN ELEKTRIK

 Semakan : 1

Nama Matapelajaran: MAKMAL PBL TAHUN 3

Tarikh Keluaran : 2020

Kod Matapelajaran : SKEL 3742

Pindaan Terakhir : 2020

 No. Prosedur : PK-UTM-FKE-(0)-10

SKEL
3742

SEKOLAH KEJURUTERAAN ELEKTRIK

UNIVERSITI TEKNOLOGI MALAYSIA

KAMPUS SKUDAI

JOHOR

VLSI SYSTEM DESIGN
LABORATORY (VLSI DESIGN)

Design Of 64-Bit Registered ALU Circuits With and Without Clock Gating.

Prepared by : Certified by :

Mr. Izam bin Kamisian P.M. Dr. Ir. Rubita binti Sudirman
Dr. Muhammad Afiq Nurudin bin Hamzah (Head of ECE Department)

Dr. Shahidatul Sadiah binti Abdul Manan

Signature :

Signature :

Stamp : Stamp :

Date : 9 February 2020 Date : 9 February 2020

Objective
The goals of this assignment are

1. To perform a complete RTL to GDS design flow.
2. To compare the dynamic power consumption between circuit with and without clock

gating.

You will take a given design through the process of functional verification, logic synthesis
(with and without clock gating), physical implementation (place & route) and static timing
analysis.

Design Overview

The design that you will be working on is a pair of 64-bit arithmetic operations, e.g.,
addition and multiplication. Each cycle will conduct a different combination of arithmetic
operation, refer Table 1. The design has both the inputs and outputs registered. The inputs
are feed to both operations to give the corresponding results as shown in the following figure.
The circuit which compiled without clock gating will run both operations simultaneously,
while the other one will run only one operation depending on the value of the input signal,
“en”. Meanwhile, the clock gating part is not in the design, but it is done in synthesis process
using DC tool.

in1, in2, outY_add is 64-bits, outY_mul is 128-bits

Table 1. Arithmetic Combination for Each Cycle.

Cycle Arithmetic Combination

1 Addition and multiplication

2 Subtraction and multiplication

3 Addition and division

4 Subtraction and division

Design Constraints

• Pre-layout constraints:
o Clock port: clk
o Clock period: 12ns
o Clock uncertainty: 0.3ns
o Clock latency: 1.0ns
o Clock transition: 0.2ns
o Input delay on all inputs except clock: 1.0ns
o Output delay on all outputs: 1.0ns
o Driving cell on all inputs except clock: NBUFFX4_LVT
o Load on all outputs: 0.2
o Operating condition: ss0p95v125c
o Area: smallest possible that meets setup timing
o Leave all others to their respective default values

• Post-layout constraints:
o Clock port: clk (clock must be propagated)
o Clock period: 12ns
o Input delay on all inputs except clock: 1.0ns
o Output delay on all outputs: 1.0ns
o Driving cell on all inputs except clock: NBUFFX4_LVT
o Load on all outputs: 0.2ff
o Operating condition: ss0p95v125c

▪ Analysis type: On chip variation
o Leave all others to their respective default values

• Physical constraints
o Max routing layer is M1 and min routing layer is M6.
o Power net: VDD
o Ground net: VSS
o Supply voltage: 0.95V
o Max IR drop: 20%

Tasks
The Verilog RTL source code for this assignment is in the directory assignment/source. You
need to modify the source code (arith64.v) according to the arithmetic operations given in
Table 1.

1. Verification
a. Perform all functional verification task in the directory

/assignment/verification.
b. Use VCS to perform all functional verification task.
c. Create a Verilog testbench to verify the given RTL design. Your testbench

must validate
i. Clock function
ii. Reset and enable

iii. Multiple combinations of input data – minimum of at least 20
different input data.

d. Save your Verilog testbench as tb.v in the directory assignments/source.
e. Run the verification in VCS using your testbench and the arith64.v design file.

Based on the waveform, explained to the lab instructor that the design has
obtained the expected outcome.

Example: if in1 is 2 and in2 is 10, output of multiplication is 20 on the
correct clock cycle.

f. Verify the function of the design is correct. If necessary, make changes to
your testbench. Note that it will take two cycles for data to come out.

2. Synthesis
a. Perform all synthesis task in the directory /assignment/synthesis.
b. The library and tool settings have already been completed. Do not modify the

.synopsys_dc.setup file.
c. Use DC Ultra in topo mode to perform all synthesis tasks.

dc_shell -topo
d. Based on the pre-layout design constraints given above, create a constraints

file with the name dc_constraints.tcl and save it to the assignment/scripts
directory. The following constraints command are not given in the prelab.

• set_clock_latency 1.0 [get_clock clk]

• set_input_delay 1.0 -clock clk [remove_from_collection [all_inputs] [get_port clk]]

• set_driving_cell -lib_cell NBUFFX4_LVT [remove_from_collection [all_inputs]
[get_port clk]]

• set_operating_conditions ss0p95v125c

e. Create a script called dc.tcl for the circuit without clock gating and dc_cg.tcl
for the circuit with the clock gating. Then, put both .tcl files in the /scripts
directory. The tcl scripts must contain the commands to

i. Read in the design
ii. Set the correct current design

iii. link the design
iv. Apply the design constraints using the file dc_constraints.tcl for both

with and without clock gating circuits.

v. Optimize the design to meet setup timing constraints. For the circuit
with the clock gating, use option “-gate_clock” to compile.

vi. Generate the constraints and setup timing reports. Save the reports
to /assignment/reports/DC directory. All reports generated by DC
must start with the prefix dc_. For example, a timing report will be
called: dc_timing.txt

vii. Save the optimized design in ddc format and as a Verilog netlist in the
directory: /assignment/netlist

viii. Exits DC upon completion of the above tasks.
f. Execute the run script using the following command structure:

dc_shell -topo -f ../scripts/run.tcl |tee -i run.log
 for without clock gating.

dc_shell -topo -f ../scripts/run_cg.tcl |tee -i run.log
 for with clock gating.

g. Once optimization completes, view the reports using any text editor (for
example, gedit). Make sure you meet all setup timing constraints. You can
ignore area violations.

3. Physical Implementation

a. Perform all physical implementation task for both circuits with and without
the clock gating in the directory /assignment/pnr.

b. The library and tool settings have already been completed. Do not modify the
.synopsys_dc.setup file.

c. Use IC Compiler to perform all physical implementation tasks.
d. Using the ddc file generated from the synthesis task (saved in the netlist

directory),
i. Read the ddc file into IC Compiler
ii. Perform a basic floorplan.

1. This is a block level design with no IO pads.
2. You can place the pins in any order
3. Use the physical constraints given above, all other physical

constraints are up to user discretion.
iii. Run the placement and routing commands.

Make sure you run “set_separate_process_options -placement false”
before “place_opt”

iv. Run the necessary timing and constraints reports (just like in DC) to
verify you have met the setup timing constraints. Screenshot your
layout for evidence to be included in the final report.

v. Save all the reports to /assignment/reports/ICC directory. All reports
generated by ICC must start with the prefix icc_.

vi. Run the verify_zrt_route and verify_lvs command to ensure the
design has no physical rule violations (DRC/LVS checks)

vii. Save the completed design in ddc and Verilog netlist formats to the
netlist directory. Use filename arith64_postlayout to differentiate the
data generated from IC Compiler compared with Design Compiler.

viii. Write out the parasitic file in SPEF format, save it in the directory
netlist.

e. Make sure you meet all setup timing constraints. You can ignore area
violations.

f. All the tasks can be performed using either IC Compiler GUI (icc_shell -gui) or
in shell mode (icc_shell) using your own .tcl scripts, or combination of GUI
and shell mode. If you do use any .tcl scripts, save all the scripts with the
proper prefix to the /scripts directory.

4. Static Timing Analysis

a. Perform all static timing analysis task for both circuits with and without the
clock gating in the directory /assignment/sta.

b. The library and tool settings have already been completed. Do not modify the
.synopsys_pt.setup file.

c. Use PrimeTime to perform all static timing analysis tasks.
d. Based on the post-layout design constraints given above, create a constraints

file with the name pt_constraints.tcl and save it to the /assignment/scripts
directory.

e. Create pt.tcl scripts for both circuits and place it in the /scripts directory. The
script must contain the commands to

i. Read in the design using Verilog netlist generated from the physical
implementation task.

ii. Set the correct current design.
iii. Link the design.
iv. Apply the design constraints using the file pt_constraints.tcl.
v. Read in the SPEF file generated from physical implementation task,

which was saved in the netlist directory.
vi. Enable the power analysis by command

set power_enable_analysis true
vii. Generate a report to check the quality of the parasitic back-

annotation.
viii. Generate reports to show all the constraints have been applied

correctly.
ix. Generate a report for showing the current status of the design

(report_analysis_coverage).
x. Generate the constraints and setup timing reports.
xi. Save all the reports to /assignment/reports/PT directory. All reports

generated by PT must start with the prefix pt_. For example, a timing
report will be called: pt_timing.txt

xii. Exits PT upon completion of the above tasks.

f. Execute the run script using the following command structure:
pt_shell -f ../scripts/pt_run.tcl |tee -i run.log

 for without clock gating.
pt_shell -f ../scripts/pt_run_cg.tcl |tee -i run.log

 for with clock gating.

g. View the reports using any text editor (for example, gedit). Make sure you
meet all setup timing constraints. You can ignore area violations.

Deliverables

Hand in the following data to your lab instructor:

1. Netlist (prelayout, postlayout)
2. Reports (DC, ICC, PT)
3. Run (execution) logs (dc.tcl, dc_cg.tcl, pt.tcl)
4. Summary report of your results from DC, ICC and PT

Include the following discussion in your report.

1. Discuss the timing slack difference for pre-layout and post-layout.
2. Tabulate the timing slacks, dynamic power dissipation, and area violations for the

circuits with and without clock gating from DC, ICC, and PT tools.
3. What are the advantages and disadvantages of clock gating in term of timing, power,

and area? Discuss with justification from the tabulated results.

End of assignment. Thank you.

