

Faculty of Electrical Engineering

Academic Session 2024/2025

BACHELOR OF BIOMEDICAL ENGINEERING WITH HONOURS (SKEBH)

Undergraduate Booklet

Version 1.0

(((HAN 20))

www.fke.utm.my

Student Profile

BACHELOR OF BIOMEDICAL ENGINEERING WITH HONOURS

3	Name	
	Matric Number	
	Phone Number	
	Email	
	Academic Advisor	

"If you set yourself up for success, everything is possible"

ORGANISATION CHART

Faculty of Electrical Engineering Universiti Teknologi Malaysia

PROF. IR. DR. HAZLINA BINTI SELAMAT Director of Control & Mechatronics Engineering Department

ASSOC. PROF. IR. TS. DR.

ASNIDA BINTI ABDUL WAHAB

Director of Biomedical Engineering & Health Sciences

Department

ASSOC. PROF. TS. DR. SHAHRIN BIN MD. AYOB **Director of Electrical Power** Engineering Department

PROF. IR. DR.

ASSOC. PROF. IR. TS. DR.

NURUL MU'AZZAH

BINTI ABDUL LATIFF

Director of Communication

Engineering Department

RUBITA BINTI SUDIRMAN Director of Electronic & **Computer Engineering** Department

PROF. IR. DR. MUHAMMAD NADZIR BIN MARSONO Deputy Dean (Academic & Student Affairs)

RAHMAN BIN SYED ABU BAKAR Deputy Dean (Research, Innovation & Development)

DR. USMAN ASSOC. PROF. DR. **ULLAH SHEIKH** KAMALUDIN BIN Postgraduate MOHAMAD YUSOF External Program Academic Manager Academic Manager

ASSOC. PROF. IR. TS. DR. ASRUL IZAM BIN AZMI Research Manager

MRS. NORAZILA NORLIZA **BINTI SAFRI BINTI ABD RAHIM** Knowledge Management/Research Senior Assistant Registrar **Consultant Officer**

MR.

MOHD NAZMI

BIN ISMAIL

Facility Manager

MRS. NUR HAKIMI

BINTI KARSONO

Deputy Registrar

DR. YUSMEERAZ **BINTI YUSOF** Quality & Strategy Manager

MRS. NUR FATIHAH **BINTI MD RAFI** Assistant Accountant

MRS. NUR ASHIKIN **BINTI ABD HADI Executive Officer** (Quality & Strategy)

PROGRAMME GUIDELINES

The University adopts the semester system and each academic year is divided into two (2) normal semesters, namely Semester I and Semester II, and a short semester at the end of Semester II. The new intake of undergraduate students is normally made during Semester I of an academic year. The minimum duration of the programme is four (4) years which is equivalent to 8 semesters.

All courses offered by the faculty have credits, except for courses which are approved by the University Senate. One (1) credit is equivalent to 14 hours of lectures or 30 hours of practical sessions (studio/project), in a semester. The total number of credits for the Bachelor of Biomedical Engineering with Honours (SKEB) programme is 137.

All students' performance and achievements are assessed formally. Each course is generally assessed based on the coursework, which constitutes not less than 50% of the overall marks, and a final exam paper, which contributes another 50%. Coursework can be in the form of homework, assignments, quizzes, tests and presentations. The final examination is conducted at the end of each academic semester. Students' performance in a course is indicated by the letter grade with the passing grade of 'D+'. Students who failed any of the courses (grade 'D' and below) are required to repeat the course during the subsquent semesters or whenever it is offered. Students may improve the grade of any course graded with 'B-' or lower, with a maximum allowance of 15 credits. Subject to the Faculty and University's Academic Regulation, students may withdraw from a course within the stipulated period. Other information on academic rules and regulations can be retrieved from the UTM website (UTM Academic Regulations).

A student must pass all courses specified in his/her programme of study and fulfil all the requirements specified for his/her programme of study set by the Faculty and University in order to be awarded with a Bachelor degree.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

After gaining 3 to 5 years of work experience, our graduates should have developed into professionals who demonstrate the following competencies :

PEO	PEO STATEMENTS
PEO1	Become Biomedical Engineers who are competent, innovative, and productive in addressing stakeholders' needs.
PEO2 Grow professionally with proficient soft s	
PEO3	Demonstrate high standards of ethical conduct, positive attitude, and societal responsibilities.

PROGRAMME LEARNING OUTCOMES (PLO)

PLO	PLO STATEMENTS
PLO1 (Engineering Knowledge)	Apply knowledge of mathematics, natural science, computing and engineering fundamentals, and an engineering specialization as specified in WK1 to WK4 respectively to develop solutions to complex engineering problems.
PLO2 (Problem Analysis)	Identify, formulate, research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences with holistic considerations for sustainable development (WKI to WK4).
PLO3 (Designs/ Development of Solutions)	Design creative solutions for complex engineering problems and design systems, components or processes to meet identified needs with appropriate consideration for public health and safety, whole-life cost, net zero carbon as well as resource, cultural, societal, and environmental considerations as required (WK5).
PLO4 (Investigation)	Conduct investigation of complex engineering problems using research methods including research-based knowledge, including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions (WK8).
PLO5 (Tool Usage)	Create, select and apply, and recognize limitation of appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems (WK2 and WK6).
PLO6 (The Engineer & The World)	Analyze and evaluate sustainable development impacts to: society, the economy, sustainability, health and safety, legal frameworks, and the environment, in solving complex engineering problems (WK1, WK5, and WK7).
PLO7 (Ethics)	Apply ethical principles and commit to professional ethics and norms of engineering practice and adhere to relevant national and international laws. Demonstrate an understanding of the need for diversity and inclusion (WK9).
PLO8 (Individual and Collaborative Team Work)	Function effectively as an individual, and as a member or leader in diverse and inclusive teams and in multidisciplinary, face-to-face, remote and distributed settings (WK9).

PROGRAMME LEARNING OUTCOMES (PLO)

PLO	PLO STATEMENTS		
PLO9 (Communication)	Communicate effectively and inclusively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, taking into account cultural, language, and learning differences.		
PLO10	Apply knowledge and understanding of engineering management principles		
(Project	and economic decision-making and apply these to one's own work, as a		
Management and	member and leader in a team, and to manage projects in multidisciplinary		
Finance)	environments.		
PLO11	Recognise the need for, and have the preparation and ability for i) independent		
(Life-long	and life-long learning ii) adaptability to new and emerging technologies and		
Learning)	iii) critical thinking in the broadest context of technological change (WK8).		

PROFESSIONAL SKILLS CERTIFICATE (PSC)

UTM has designed its own UTM Professional Skills Certificate (UTM PSC) programme managed by UTM Institute for Life Ready Graduate (UTM iLeague) to enhance the knowledge and skills of UTM students. It provides students with value-added courses so that they will have a competitive-edge skills when they enter the employment market. Students will receive a Certificate of UTM Professional Skills Programme and the courses taken will appear in the student transcript. Students are required to undertake and must pass five (5) PSC courses as listed as follows in order to graduate:

COMPULSORY COURSES (ALL THREE (3) COURSES)

NO	COURSES	CODE
1	Design Thinking for Entrepreneur	GLRB0010
2	Talent and Competency Management	GLRM0010
3	English Communication Skills for Graduating Students	GLRL0010

ELECTIVE COURSES (ANY TWO (2) OF THESE COURSES

NO	COURSES	CODE
1	Data Analytics for Organization	GLRT0010
2	Professional Ethics and Integrity	GLRM0020
3	Construction Management (Mechanical & Electrical)	GLRT0020
4	OSHE for Engineering Industry and Laboratory	GLRT0030
5	Quality Management for Built Environment and Engineering Professionals	GLRT0050
6	Safety and Health Officer Introductory Course	GLRT0060

PRISMS

PROGRAM INTEGRASI SARJANA MUDA-SARJANA (4 YEARS BACHELOR DEGREE + 1 YEAR MASTER DEGREE)

PRISMS is a newly introduced programme that integrates undergraduate high-level elective SKEB 5**3 courses with the core courses of the Master degree programme. Under PRISMS, students have an opportunity to complete and receive two degrees which are Bachelor degree and Master degree within 5 years (4+1).

REQUIREMENT

Students who have completed third year second semester courses with a cumulative grade point average (CGPA) of 3.3 and above are eligible to apply for PRISMS. Students can apply using the PRISMS application form and must be recommended by the Academic Advisor, approved by the Program Director, and certified by the Dean of Faculty. Once the application to join PRISMS is approved, students can register for the SE**5**3 courses during the course pre-registration or compulsory registration period.

CREDIT TRANSFER

Students must obtain grade B and above of the high-level elective SKEB 5**3 courses for vertical credit transfer into the Master degree program that students plan to enroll. Maximum unit allowed for the credit transfer is twelve (12) credits.

For more information PRISMS, kindly visit FKE website.

BACHELOR OF BIOMEDICAL ENGINEERING WITH HONOURS (SKEBH)

Biomedical engineering and health sciences is a rapidly growing multidisciplinary field which combines engineering with the principle of biology and medicine to solve problems related to healthcare and the development of medical technologies. It consists a wide range of topics including anatomy and physiology, clinical engineering, rehabilitation, biomedical imaging, biomedical signal processing, biomechanics, bio-material, robotics, bio-informatics, tissue engineering, computer programming, electronics and other related topics. It is an excellent choice for individuals who are interested in using their technical skills to make a positive impact on healthcare and human health.

PROGRAMME SPECIFICATION

The Bachelor of Biomedical Engineering with Honours is offered either on a fulltime or part time basis. The full-time programme is offered only at the UTM Main Campus in Johor Bahru, while the part-time programme is offered at UTM Kuala Lumpur. The duration of study for the full-time programme is subject to the student's entry qualifications and lasts between four (4) years to a maximum of six (6) years. The programme is offered on full-time basis and is based on a 2-Semester per academic session. Generally, students are expected to undertake courses equivalent to between fifteen (15) to eighteen (18) credit hours per semester. Assessment is based on courseworks and final examinations given throughout the semester.

PEO	EDUCATIONAL OBJECTIVE		
PEO1	Become Biomedical Engineers who are competent, innovative, and productive in addressing stakeholders' needs.		
PEO2	Grow professionally with proficient soft skills.		
PEO3	Demonstrate high standards of ethical conduct, positive attitude, andsocietal responsibilities.		

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PROGRAMME GENERAL INFORMATION

Awarding Institu	ition	Universiti Tekno	ologi Malaysia		
Teaching Institution		Universiti Teknologi Malaysia			
Programme Name		Bachelor of Biomedical Engineering with Honours			
Final Award		Bachelor of Biomedical Engineering with Honours			
Programme Code		SKEB			
Professional or Statutory Body of Accreditation		Board of Engineers Malaysia (BEM)			
Language(s) of Instruction		English and Bahasa Melayu			
Mode of Study		Conventional			
Mode of Operation		Self-govern			
Study Scheme		Full Time			
Study Duration		Minimum 4 years, Maximum 6 years			
Type of Som	No of	Semester	No of Week	s / Semester	
Type of Sem	Full Time	Part Time	Full Time	Part Time	
Normal	8		18	÷	
Short	4	4	10		

COURSE CLASSIFICATION

No	Classification	Credit Hour	Percentage
1	University General Course	16	11.7%
2	Mathematics	15	10.9%
3	Programme Core	94	68.6%
4	Programme Electives	9	6.57%
5	Free Electives	3	2.19%
	TOTAL	137	100%
A	 ENGINEERING COURSE Lecture/Project/ Lab Workshop/Field/Design Industrial Training Final Year Project 	92 - 5 6	
	TOTAL CREDIT HOURS FOR PART A	103	75.18%
в	 NON-ENGINEERING Applied Sciences/ Mathematic / Com Management/Law/Humanities/Ethics/Eco nomy Language Co-Curriculum Free Electives 	15 8 6 2 3	
	TOTAL CREDIT HOURS FOR PART B	34	24.82%
	TOTAL CREDIT HOURS FOR PART A & B	137	100%
	TOTAL CREDIT HOURS FOR GRADUATE	1	37

SKEBH COURSE MENU (INTAKE OCT 2024)

SKEBH COURSE MENU (YEAR 1)

Code	Courses	Credit	Pre-req
ULRS 1032	Integrity and Anti-Corruption	2	
SKEB 1012	Introduction to Biomedical Engineering	2	-
SKEB 1513	Human Anatomy and Physiology	3	
SKEE 1013	Electrical Circuit Analysis	3	
SSCE 1693	Engineering Mathematics I	3	
SKEE 1233	Digital Electronic Systems	3	

Code	Courses	Credit	Pre-req
ULRS 1182	Appeciation of Ethics and Civilizations (for local students)	0	
UHLM 1012	Malay Language for Communication 2 (for international students)	2	
SKEB 2513	Basic Rehabilitation	3	SKEB 1513
SKEE 1103	C Programming for Engineers	3	
SSCE 1793	Differential Equations	3	SSCE 1693 (Min Grade D
SKEB 1313	Statics and Dynamics	3	
SKEE 1073	Electronic Devices and Circuits	3	SKEE 1013

SKEBH COURSE MENU (YEAR 2)

Code	Courses	Credit	Pre-req
SKEE 2073	Signals and Systems	3	
SKEB 3323	Solid Mechanics	3	SKEB 1313
SSCE 1993	Engineering Mathematics II	3	SSCE 1693 (Min Grade D)
SKEE 3223	Microprocessor	3	SKEE 1233
SKEE 2752	Electronic Design Laboratory	2	
SSCE 2193	Engineering Statistics	3	
	TOTAL CREDIT HOURS	17	

Code	Courses	Credit	Pre-rec
ULRS 1182	Appreciation of Ethics and Civilization (for international students)	2	
ULRS 1022	Philosophy and Current Issues (for local & international students)	2	
ULRF 2**2	Elective of Co-Curicular Service Learning	2	
UHLB 2122	Professional Communication Skills 1	2	
SSCE 2393	Numerical Methods	3	
SKEE 2523	Electromagnetic Field Theory	3	SSCE 1993
SKEE 3263	Electronic Systems	3	SKEE 1073
SKEB 3313	Biomedical Materials	3	
	TOTAL CREDIT HOURS	18	

SKEBH COURSE MENU (YEAR 3)

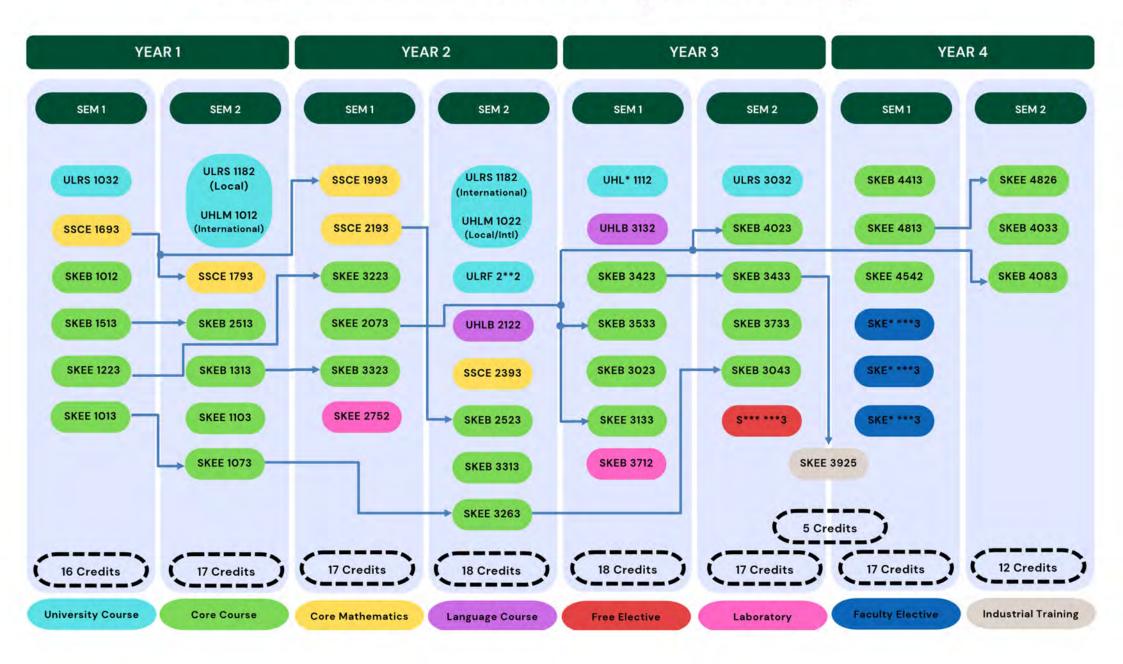
	YEAR 3 (SEM 5) : 2026/27-1		
Code	Courses	Credit	Pre-req
UHL* 1112	Foreign Language for Communication	2	
UHLB 3132	Professional Communication Skills II	2	
SKEE 3133	System Modelling and Analysis	3	SKEE 2073
SKEB 3423	B 3423 Clinical Engineering I		
SKEB 3533	Biomedical Communications	3	SKEE 2073
SKEB 3712	Specialized Biomedical Laboratory	2	
SKEB 3023	3023 Biomedical Imaging		
	TOTAL CREDIT HOURS	18	
	YEAR 3 (SEM 6) : 2026/27-2		
Code	Courses	Credit	Pre-req
ULRS 303	2 Entrepreneurship and Innovation	2	
SKEB 402	Biomedical Signal Processing	3	SKEE 2073
SKEB 343	3 Clinical Engineering II	3	SKEB 3423
SKEB 304	3 Instrumentation and Measurement in Biomedical	3	SKEE 3263
SKEE 373:	Integrated Design Project	3	
S*** ***3	Free Electives	3	
	TOTAL CREDIT HOURS	17	
	YEAR 3 (SHORT SEMESTER) : 2026/27	-3	
SKEE 392	i Industrial Training	5	Credit earned >=86 & SKEB 3433
	TOTAL CREDIT HOURS	5	

SKEBH COURSE MENU (YEAR 4)

Code	Courses	Credit	Pre-rec
SKEE 4542	Engineering Management Principles	2	
SKEE 4813	Methodology of Research and Development	3	
SKEB 4413	Biochemistry for Biomedical Engineers	3	
SKE*5**3/4**3	Field Elective 1 / PRISMS Elective 1	3	
SKE*5**3/4**3	Field Elective 2/ PRISM Elective 2	3	
SKE*5**3/4**3	Field Elective 3/ PRISM Elective 3/ Faculty FreeElective	3	
	TOTAL CREDIT HOURS	17	

nal Year Project	6	1
	0	SKEE 4813
rofessional Biomedical Engineering ractice	3	
omedical Artificial Intelligence	3	SKEE 2073
	actice	actice

SKEBH COURSE MENU (ELECTIVES)


Code	Courses	Credit	Pre-req
SKEB 4043	Biomedical Image Processing	3	SKEB 3023
SKEB 4323	Biomedical Devices	3	
SKEB 4343	Cell and Tissue Engineering	3	
SKEB 4433	Biomedical Instrumentation Management	3	
SKEB 4513	Rehabilitation Engineering	3	
SKEB 4113	Bio-Fabrication	3	
SKEB 4123	Bio-Material Characterization and Analysis	3	SKEB 3313
SKEB 4133	Machining and Testing for Biomedical	3	
SKEB 4163	Object Oriented Programming for Engineers	3	SKEE 1103
SKEL 4543	Biosystem Modelling	3	SKEB 1513
SKEL 4563	Biosensor and Transducers	3	SKEE 2133
SKET 3583	Digital Communication Systems	3	SKEB 3533
SKET 4533	Wireless Communication Systems	3	
SKEL 3613	Semiconductor Material Engineering	3	SKEE 1073
SKEL 4213	Software Engineering	3	SKEE 1103
SKEL 4343	Information Security	3	SKEE 1233
SKEB 3503	Physiology & Introduction to Medicine	3	

AWARD REQUIREMENTS

To graduate, students must:

- Attain a total of not less than 137 credit hours (SKEB)
- Attain a minimum CGPA of 2.0.
- Complete Professional Skills Certificates (PSC).

CURRICULUM FLOWCHART (INTAKE OCT)

SKEBH COURSE MENU (INTAKE MARCH 2025)

SKEBH COURSE MENU (YEAR 1)

Code	Courses	Credit	Pre-req
SKEE 1103	C Programing for Engineers	3	
SKEB 1313	Statics and Dynamics	3	
SKEB 1513	Human Anatomy and Physiology	3	
SKEE 1013	Electrical Circuit Analysis	3	
SSCE 1693	Engineering Mathematics I	3	
UHMS 1182	Appreciation of Ethics and Civilizations (for Local Students)	12.1	
UHLM 1012	Malay Language for Communication 2 (for International Students)	2	
	TOTAL CREDIT HOURS	17	
	TOTAL CREDIT HOURS YEAR 1 (SEM 2) : 2025/26-1	17	
Code		17 Credit	Pre-req
Code SKEB 1012	YEAR 1 (SEM 2) : 2025/26-1	4 5 4	Pre-req
	YEAR 1 (SEM 2) : 2025/26-1 Courses	Credit	Pre-req SKEB 1313
SKEB 1012	YEAR 1 (SEM 2) : 2025/26-1 Courses Introduction to Biomedical Engineering	Credit 2	
SKEB 1012 SKEB 3323	YEAR 1 (SEM 2) : 2025/26-1 Courses Introduction to Biomedical Engineering Solid Mechanics	Credit 2 3	Pre-req SKEB 1313 SKEE 1013
SKEB 1012 SKEB 3323 SKEE 1233	YEAR 1 (SEM 2) : 2025/26-1 Courses Introduction to Biomedical Engineering Solid Mechanics Digital Electronic Systems	Credit 2 3 3	SKEB 1313

SKEBH COURSE MENU (YEAR 2)

Code	Courses	Credit	Pre-req
SKEB 2513	Basic Rehabilitation	3	SKEB 1513
SKEE 3263	Electronic Systems	3	SKEE 1073
SKEE 2523	Electromagnetic Field Theory	3	SSCE 1993
SSCE 1793	Differential Equations	3	SSCE 1693
ULRF 2**2	Elective of Curricular Service Learning	2	
UHLB 2122	Professional Communication Skills 1	2	
ULRS 1182	Appreciation of Ethics and Civilization (for international students)	2	
ULRS 1022	Philosophy and Current Issues (for local & international students)		
	TOTAL CREDIT HOURS	18	
	YEAR 2 (SEM 4) : 2026/27-1		
Code	YEAR 2 (SEM 4) : 2026/27-1 Courses	Credit	Pre-req
		Credit 3	Pre-req
	Courses	erena	Pre-req
SKEB 3423	Courses Clinical Engineering I	3	Pre-req
SKEB 3423 SKEE 2752	Courses Clinical Engineering I Electronic Design Laboratory	3 2	Pre-req
SKEB 3423 SKEE 2752 SSCE 2393	CoursesClinical Engineering IElectronic Design LaboratoryNumerical Methods	3 2 3	Pre-req
SKEB 3423 SKEE 2752 SSCE 2393 SKEE 2073	CoursesClinical Engineering IElectronic Design LaboratoryNumerical MethodsSignal and Systems	3 2 3 3	Pre-req
SKEB 3423 SKEE 2752 SSCE 2393 SKEE 2073 SSCE 2193	CoursesClinical Engineering IElectronic Design LaboratoryNumerical MethodsSignal and SystemsEngineering Statistics	3 2 3 3 3	Pre-req

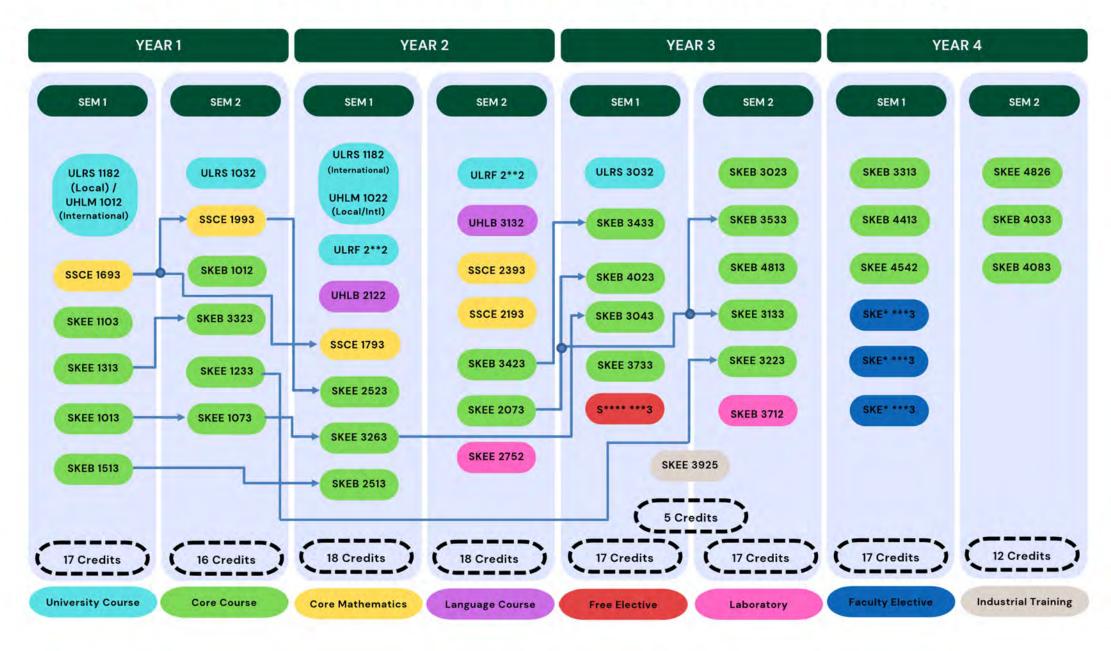
SKEBH COURSE MENU (YEAR 3)

Code		Courses	Credit	Pre-req
SKEB 3433	Clin	ical Engineering II	3	SKEB 3423
SKEB 3733	Inte	grated Design Project	3	
SKEB 4023 Bior		medical Signal Processing	3	SKEE 2073
SKEB 3043		rumentation and Measurement in medical	3	SKEE 3263
ULRS 3023	Entr	epreneurship & Innovation	2	
S*** ###3	Free	e Elective	3	
		TOTAL CREDIT HOURS	17	
SKEE 3925		Industrial Training TOTAL CREDIT HOURS	5	Credit earned >=86 credits & SKEB 3433
		YEAR 3 (SEM 6) : 2027/28-1		
Code		YEAR 3 (SEM 6) : 2027/28-1 Courses	Credit	Pre-req
Code SKEB 3023	3		Credit 3	Pre-req
		Courses	16,10,775	Pre-req
SKEB 302	3	Courses Biomedical Imaging	3	
SKEB 3023 SKEB 3533	3	Courses Biomedical Imaging Biomedical Communications	3	
SKEB 3023 SKEB 3533 SKEB 3712	3	CoursesBiomedical ImagingBiomedical CommunicationsSpecialized Biomedical Laboratory	3 3 2	SKEE 2073
SKEB 3023 SKEB 3533 SKEB 3712 SKEE 3223	3	CoursesBiomedical ImagingBiomedical CommunicationsSpecialized Biomedical LaboratoryMicroprocessor	3 3 2 3	SKEE 1233

SKEBH COURSE MENU (YEAR 4)

Code	Courses	Credit	Pre-req
SKEE 4542	Engineering Management Principles	2	
SKEB 3313	Biomedical Materials	3	
SKEB 4413	Biochemistry for Biomedical Engineers	3	
SKE*5**3/4**3	Field Elective 1 / PRISMS Elective 1	3	
SKE*5**3/4**3	Field Elective 2/ PRISM Elective 2	3	
SKE*5**3/4**3	Field Elective 3/ PRISM Elective 3/ Faculty FreeElective	3	
	TOTAL CREDIT HOURS	17	
	YEAR 4 (SEM 8) : 2028/29-1		
Code	Courses	Credit	Pre-rec
SKEE 4826	Final Year Project	6	SKEE 4813
SKEB 4033	Professional Biomedical Engineering Practice	3	
SKEB 4083	Biomedical Artificial Intelligence	3	SKEE 2073
			-

SKEBH COURSE MENU (ELECTIVES)


Code	Courses	Credit	Pre-req
SKEB 4043	Biomedical Image Processing	3	SKEB 3023
SKEB 4323	Biomedical Devices	3	
SKEB 4343	Cell and Tissue Engineering	3	
SKEB 4433	Biomedical Instrumentation Management	3	
SKEB 4513	Rehabilitation Engineering	3	
SKEB 4113	Bio-Fabrication	3	
SKEB 4123	Bio-Material Characterization and Analysis	3	SKEB 3313
SKEB 4133	Machining and Testing for Biomedical	3	-
SKEB 4163	Object Oriented Programming for Engineers	3	SKEE 1103
SKEL 4543	Biosystem Modelling	3	SKEB 1513
SKEL 4563	Biosensor and Transducers	3	SKEE 2133
SKET 3583	Digital Communication Systems	3	SKEB 3533
SKET 4533	Wireless Communication Systems	3	
SKEL 3613	Semiconductor Material Engineering	3	SKEE 1073
SKEL 4213	Software Engineering	3	SKEE 1103
SKEL 4343	Information Security	3	SKEE 1233
SKEB 3503	Physiology & Introduction to Medicine	3	

AWARD REQUIREMENTS

To graduate, students must:

- Attain a total of not less than 137 credit hours (SKEB)
- Attain a minimum CGPA of 2.0.
- Complete Professional Skills Certificates (PSC).

CURRICULUM FLOWCHART (INTAKE MARCH)

ELECTIVE CLUSTERS

Students are advised to choose elective courses based on elective clusters to ensure a deep understanding of specific areas within the biomedical engineering field.

MEDICAL DEVICE OPERATIONS AND MANAGEMENT

- SKEB 4043 Biomedical Image Processing
- SKEB 4323 Biomedical Device
- SKEB 4433 Biomedical Instrumentation Management
- SKEB 4513 Rehabilitation Engineering
- SKEB 4133 Machining and Testing for Biomedical

BIOMATERIALS AND BIOENGINEERING

- SKEB 4343 Cell and Tissue Engineering
- SKEB 4113 Bio-fabrication
- SKEB 4123 Bio-Material Characterization and Analysis
- SKEL 4543 Biosystem Modelling
- SKEL 4563 Biosensor and Transducers
- SKEB 3503 Physiology & Introduction to Medicine

MEDICAL DEVICE CONNECTIVITY AND INTEGRATION

- SKET 3583 Digital Communication Systems
- SKET 4533 Wireless Communication Systems
- SKEL 4213 Software Engineering
- SKEL 4343 Information Security
- SKEB 4163 Object Oriented Programming for Engineer
- SKEL 3613 Semiconductor Material Engineering

GRADUATION CHECKLIST (1)

It is the responsibility of the students to ensure that all courses are taken and passed. In order to graduate, students must pass all courses in the following checklist. Students who do not complete any of the courses are not eligible to graduate.

NO	CODE	COURSE	CREDIT EARNED (JKD)	CREDIT COUNTED (JKK)	TICK (/) IF PASSED
BIOME	DICAL ENGINE	ERING COURSES			-
1	SKEB 1012	Introduction to Biomedical Engineering	2	2	
2	SKEB 1513	Human Anatomy and Physiology	3	3	
3	SKEE 1013	Electrical Circuit Analysis	3	3	
4	SKEE 1223	Digital Circuit System	3	3	
5	SKEB 2513	Basic Rehabilitation	3	3	
6	SKEE 1103	C Programming for Engineers	3	3	
7	SKEB 1313	Statics and Dynamics	3	3	
8	SKEE 1073	Electronic Devices and Circuits	3	3	
9	SKEE 2073	Signals and Systems	3	3	
10	SKEB 3323	Solid Mechanics	3	3	
n	SKEE 3223	Microprocessor	3	3	
12	SKEE 2752	Electronic Design Laboratory	2	2	
13	SKEE 2523	Electromagnetic Field Theory	3	3	
14	SKEB 3043	Instrumentation and Measurement in Biomedical	3	3	
15	SKEB 3313	Biomedical Materials	3	3	
16	SKEE 3133	System Modelling and Analysis	3	3	
17	SKEB 3423	Clinical Engineering I	3	3	
18	SKEB 3533	Biomedical Communications	3	3	
19	SKEB 3712	Specialized Biomedical Laboratory	2	2	
20	SKEB 3023	Biomedical Imaging	3	3	
21	SKEB 4023	Biomedical Signal Processing	3	3	
22	SKEB 3433	Clinical Engineering II	3	3	
23	SKEE 3263	Electronic Systems	3	3	
24	SKEE 3733	Integrated Design Project	3	3	
25	SKEE 3925	Industrial Training	5	HW	
26	SKEE 4542	Engineering Management Principles	2	2	

GRADUATION CHECKLIST (2)

NO	CODE	COURSE	CREDIT EARNED (JKD)	CREDIT COUNTED (JKK)	TICK (/)
27	SKEE 4813	Methodology of Research and Development	3	3	
28	SKEB 4413	Biochemistry for Biomedical Engineers	3	3	
29	SKE*4**3/5**3	Field Elective 1 / PRISMS Elective 1	3	3	1
30	SKE*5**3/4**3	Field Elective 2/ PRISM Elective 2	3	3	<u></u>
31	SKE*5**3/4**3	Field Elective 3/ PRISM Elective 3/ Faculty Free Elective	3	3	· · · · · ·
32	SKEE 4826	Final Year Project	6	6	1
33	SKEB 4033	Professional Biomedical Engineering Practice	3	3	
34	SKEB 4083	Biomedical Artificial Intelligence	3	3	
ΤΟΤΑΙ	CREDIT OF BIOM	MEDICAL ENGINEERING COURSES (a)	103	98	
APPLI	ED SCIENCE / MA	THEMATICS / COMPUTER COURSES			
35	SSCE 1693	Engineering Mathematics I	3	3	
36	SSCE 1793	Differential Equations	3	3	
37	SSCE 1993	Engineering Mathematics II	3	3	
38	SSCE 2193	Engineering Statistics	3	3	
39	SSCE 2393	Numerical Methods	3	3	
	CREDIT OF APP	LIED SCIENCE / MATHEMATICS / COMPUTER	15	15	
UNIVE	RSITY GENERAL	COURSES			
Cluste	er 1: Malaysian C	Core Value		_	
40	ULRS 1022	Philosophy and Current Issues	2	2	
41	UHMS 1182	Appreciation of Ethics and Civilization	2	2	
42	UHLM 1012	Malay Language Communication	(2)	(2)	1
intern	ational students	uster 1 courses is 4 creditsInternational stud ; ANDChoose 1 (one) course from 2 (two) op d UHMS 1182 are compulsory for Malaysian st	tions: (ULRS 1		
Cluste	er 2: Value and l	dentity			
43	ULRS 1012	Value and Identity	2	2	
Cluste	er 3: Global Citiz	en			
44	ULRF 2**2	Elective of Co-Curricular Service Learning	2	2	

GRADUATION CHECKLIST (3)

NO	CODE	COURSE	CREDIT EARNED (JKD)	CREDIT COUNTED (JKK)	TICK (/) IF PASSED
Cluster	r 4: Communic	ation Skills			
45	UHLB 2122	Professional Communication Skills 1	2	2	
46	UHLB 3132	Professional Communication Skills 2	2	2	
47	UHL* 1112	Foreign Language for Communication	2	2	
Cluster	r 5: Enterprisin	g Skills			
48	ULRS 3032	Entrepreneurship & Innovation	2	2	
Free Ele	ectives				
49	S*** ###3	Free Electives	3	3	
	CREDIT OFUNIV VES (c)	ERSITY GENERAL COURSES + FREE	19	19	
TOTAL	CREDIT TO GRA	DUATE (a + b + c)	137	132	
COMPL	ULSORY PSC CC	URSES (Enrol All 3 Courses)			
1	GLRB0010	Design Thinking for Entrepreneur			
1	GLRB0010 GLRM0010	Design Thinking for Entrepreneur Talent and Competency Management	-		
	S S VIA I A		iting Students	5	
2 3	GLRM0010 GLRL0010	Talent and Competency Management English Communication Skills for Gradua	iting Students	5	
2 3	GLRM0010 GLRL0010	Talent and Competency Management English Communication Skills for Gradua (ECS)	iting Students	5	
2 3 ELECTIV	GLRM0010 GLRL0010 VE PSC COURSE	Talent and Competency Management English Communication Skills for Gradua (ECS) S (Choose Any 2 Courses only)	iting Students	5	
2 3 ELECTIV 1	GLRM0010 GLRL0010 VE PSC COURSE GLRT0010	Talent and Competency Management English Communication Skills for Gradua (ECS) S (Choose Any 2 Courses only) Data Analytics for Organization			
2 3 ELECTIV 1 2	GLRM0010 GLRL0010 VE PSC COURSE GLRT0010 GLRM0020	Talent and Competency Management English Communication Skills for Gradua (ECS) State Choose Any 2 Courses only) Data Analytics for Organization Professional Ethics and Integrity	l & Electrical)	5	
2 3 ELECTIV 1 2 3	GLRM0010 GLRL0010 VE PSC COURSE GLRT0010 GLRM0020 GLRT0020	Talent and Competency Management English Communication Skills for Gradua (ECS) S (Choose Any 2 Courses only) Data Analytics for Organization Professional Ethics and Integrity Construction Measurement (Mechanical	l & Electrical) atory	5	
2 3 ELECTIV 1 2 3 4	GLRM0010 GLRL0010 VE PSC COURSE GLRT0010 GLRM0020 GLRT0020 GLRT0030	Talent and Competency Management English Communication Skills for Gradua (ECS) S (Choose Any 2 Courses only) Data Analytics for Organization Professional Ethics and Integrity Construction Measurement (Mechanical OSHE for Engineering Industry and Labora	l & Electrical) atory ratory Works	5	
2 3 ELECTIV 1 2 3 4 5	GLRM0010 GLRL0010 VE PSC COURSE GLRT0010 GLRM0020 GLRT0020 GLRT0030 GLRT0040	Talent and Competency Management English Communication Skills for Gradua (ECS) State Analytics for Organization Professional Ethics and Integrity Construction Measurement (Mechanical OSHE for Engineering Industry and Labora OSHE for Construction Industry and Labora Quality Management for Build Environment	I & Electrical) atory ratory Works ent and	5	

COURSE APPROVAL (MORE THAN 18 CREDITS)

21 Credits

Approval by Academic Advisor and Dean

Prof. Dr. Jafri bin Din **Dean** Faculty of Electrical Engineering jafri@utm.my

20 Credits Approval by Academic Advisor and Deputy Dean (Academic and Student Affairs)

Prof. Ir. Dr. Muhammad Nadzir Marsono **Deputy Dean** Academic and Student affairs mnadzir@utm.my

19 Credits Approval by Academic Advisor and Director

Prof. Ir. Dr. Rubita Sudirman **Director (ECE)** rubita@utm.my

PM. Ts. Dr. Shahrin Md Ayob **Director (POWER)** e-shahrin@utm.my

Prof . Ir. Dr. Hazlina Selamat **Director (CMED)** hazlina@utm.my

PM. Ir. Ts. Dr. Asnida Abd Wahab **Director (BME)** asnida.aw@utm.my

Important : Students are not allowed to take more than 21 credit hours

ACADEMIC PROGRESS

SEMESTER	GPA	CGPA	REMARKS
	· · · · · ·		

COURSE SYNOPSIS

CODE	SYNOPSIS	
SKEB 1012 Introduction to Biomedical Engineering	This course is specially designed to introduce biomedical engineering and motivate students to understand the fields in biomedical engineering. Sub-fields of Biomedical Engineering are introduced. A mini robot group project in allows student to experience basic knowledge of planning, assembling, design and programming.	
SKEB 1513 Human Anatomy & Physiology	Throughout this course, student will learn about human anatomy and physiology in three phases. The first phase will cover anatomical terminology and supporting systems. The second phase will cover major controlling systems. The third phase will cover the digestive, endocrine, and immune systems.	
SKEE 1013 Electrical Circuit Analysis	This course introduces students to the basic laws, methods of analy and theorems for direct current, DC and alternating current, AC circ such as Ohms Law, Kirchhoff's Current and Voltage Laws, Mesh a Nodal Analysis and Thevenin's and Norton's Theorems.	
SKEE 1233 Digital Electronic Systems	This course teaches the principles of digital systems. From signal concepts and number systems and codes, it proceeds to logic gates, their relationship to Boolean algebra, logic simplification, and the integration of gates to form digital circuits for medium-scale integration and arithmetic.	
SKEB 2513 Basic Rehabilitation	The course aims to introduce students to basic rehabilitation principles that can be applied within the context of rehabilitation engineering. A principle direction of this course is to equip students with the basic knowledge about some of the most common impairments and the most common medical conditions, disease, injuries, or disorders causing impairment and disability and correlating concepts with clinical scenarios.	

COURSE SYNOPSIS

CODE	SYNOPSIS	
SKEE 1103 C Programming for Engineers	This course introduces students to basic programming concepts and problem-solving techniques, with an emphasis on embedded systems. The course begins with an introduction to computer structures, before moving on to C programming concepts (editing, compiling, and debugging). Programs will be modeled with high level programming constructs (sequence, selection, looping) along with design tools (pseudocode and flowchart).	
SKEB 1313 Statics and Dynamics	Statics and dynamics are two fundamental and important mechanical principles to equip undergraduates with the necessary tools to solve biomechanics-related problems. This course covers the concepts and principles related to the physical behaviour of materials under static loads and during motion.	
SKEE 1073 Electronic Devices and Circuits	This course provides introduction to the basic operating principles and applications of discrete electronic devices and circuits. The course content starts with the fundamental solid-state principles and continues the discussions with the constructions and characteristics of diode, Bipolar Junction Transistor (BJT) and Enhancement Metal Oxide Semiconductor Field Effect Transistor (E-MOSFET).	
SKEE 2073 Signals and Systems	Signals and of continuous-time and discrete-time signals, the processing of signals	
SKEB 3323 Solid Mechanics Solid Mechanics Solid Mechanics The course provides students with the knowledge to detern strength and stiffness of idealisedengineering structures - ba bolts, shafts, beams, bones and soft tissue. The types of loadings are axial forces, bending forces, torsional loads, tra loads, and combination of theseloads.		

COURSE SYNOPSIS

CODE	SYNOPSIS		
SKEE 3223 Microprocessor	This course introduces the principles and applications of microprocessors. Topics emphasized are processor architecture, assembly and HLL language and fundamentals of interfacing in a microprocessor-based embedded system. This course emphasizes on understanding the fundamentals of microprocessor operation, writing coherent and error-free assembly and HLL language programs, and designing basic interfacing circuits.		
SKEE 2752 Electronic Design Laboratory	In this course, the students will attend four 2nd year laboratories namely Electrotechnic, Basic Electronic, Digital Electronic and Instrumentation Laboratories. The students will attend a three-hour lab per week. The students are expected to complete 3 experiment topics for each lab in three weeks. In total, the student will perform 12 experiments.		
SKEE2523 Electromagnetic Field Theory	This course presents several major collective understandings and theories within the area of electrostatic, magnetostatic and electromagnetic fields to the students. The abovementioned electromagnetic field theory is succinctly summarized via the Maxwell's equations.		
SKEE 3263 Electronic Systems	This course covers some topics in functional electronic circuits. The circuits are derived from a diverse electronic circuitry that exist in many electronic instrumentations. The function, the behaviour and the characteristics of the functional circuits are analysed. Design examples are presented to guide students with the necessary knowledge of how to design the functional electronic circuits based on certain predetermined specifications		
SKEB 3313 Biomedical Materials	This subject provides an introduction to the fundamentals of recent advances in biomedical materials. It covers a broad spectrum of biomedical materials which include metals, ceramics, polymers and composites. It takes an interdisciplinary approach to describe the chemistry and physic of biomaterials, their biocompatibility and the consequences of implantation of the devices, made of these materials, into the human body.		

CODE	SYNOPSIS	
SKEE 3133 System Modeling and Analysis	This course introduces the students to the fundamental ideas and definitions of control systems, open loop and close loop control systems, process of control system design and representation. Students will be taught how to obtain mathematical models of actual physical systems such as electrical, mechanical and electromechanical systems in transfer function (frequency domain) and state space equations (time domain).	
SKEB 3423 Clinical Engineering I	This course introduces students to the concept of healthcare institutions, its functions, scope of services, specialty disciplines of medicine and common medical devices used in those specialty disciplines. They will also be exposed to principles of clinical engineering as a subspecialty of biomedical engineering and clinical enginee's role in supporting healthcare institutions.	
SKEB 3533 Biomedical Communications	This course introduces the students the basic principles of communication in biomedical field. The fundamental concepts of communication in medical and healthcare field will be strongly emphasized. It aims to provide the students with in-depth understanding on the wireless technology and wireless body network.	
SKEB 3712 Specialized Biomedical Laboratory	This 3rd year Specialized Laboratory is a required course for third year students in Bachelor of Biomedical Engineering with Honours degree program. This course involves experiments in many different areas of biomedical engineering such as Bioinstrumentation, Biomechanics and Biomaterials, Medical Imaging, Biomedical Signal Processing and Clinical Engineering.	
SKEB 3023 Biomedical Imaging	A course for introducing and exposing students to the world of medical tomography. It focuses on physical, operation and signal formation of medical imaging techniques from various imaging modalities such as MRI, ultrasound, CT-scan, nuclear medicine and X-ray.	

CODE	SYNOPSIS
SKEB 4023 Biomedical Signal Processing	Manual analysis of biomedical signals has many limitations and is very subjective. Therefore, computer analysis of these signals is essential since it can provide accurate and permanent records of diagnosis as well as quantitative measurement. Hence, this course presents methods of digital signal processing for biomedical signals. The course will discuss the fundamental and current approach of biomedical signal processing.
SKEB 3433 Clinical Engineering II	This course introduces students to the theories, functions, and principles of operation for active medical devices used in various specialty disciplines within healthcare institutions. It then covers the role and responsibilities of clinical engineers in supporting healthcare technology, including relevant standards and electrical safety maintenance of medical devices. The course also includes practical modules on planned preventive maintenance and basic troubleshooting of medical devices.
SKEB 3043 Instrumentation and Measurement in Biomedical	This course introduces how electronic circuits and systems are used in the design of biomedical measurement systems and biomedical instrumentation design. The architecture of electronic instruments used to measure physiological parameters, and the use of electrodes and transducers are addressed, as well as the analysis of major process functions integrated in these instruments. Four main focused instruments are ECG, EMG, PPG, and Respiratory.
SKEE 3733 Integrated Design Project	The course provides students with the opportunity to integrate technical knowledge and generic skills attained in the earlier years. This is to be achieved within the context of an engineering project conducted in a small team (typically three or four students) under the supervision of an academic staff and with optional of industry partner as advisor.

CODE	SYNOPSIS	
SKEE 3925 Industrial Training	Students will undergo an industrial training lasting for 12 weeks at an approved private, government or semi-government agencies. Placement at the respective agencies will be initiated by the applications from the students. Approval of the application is at the discretion of the Faculty.	
SKEE4542 Engineering Management	This course introduces the engineer to the ways in which principles of management, project management and financial management have been and are applied in the kinds of work they are almost likely to encounter. Today these principles are needed by the engineering manager and those they manage. The basic outline of the course looking at the four main management functions followed by the functions of project management. Finally, the course further discusses on financial management in achieving organization goals and objectives efficiently and effectively.	
SKEE 4813 Methodology of Research and Development	This course introduces the scientific method for conducting research and development projects, particularly in electrical engineering (EE). It covers topics such as problem formulation and objective, literature methodology and design, data collection and analysis, research management and ethics. It also emphasizes technical writing skills for scientific publications, research proposal and thesis.	
SKEB 4413 Biochemistry for Biomedical Engineers	The course provides fundamental concepts of biochemistry (macromolecules function and properties of living systems) and focuses in the biochemical analysis and techniques of these macromolecules. The importance of biochemistry in medical diagnostic will be highlighted.	

CODE	SYNOPSIS	
SKEE4826 Final Year Project	The Final Year Project (FYP) aims to equip students with the knowledge and skills necessary to conduct research-based projects, perform analysis, and interpret data for complex engineering problems. It emphasizes the application of engineering principles, modern tools, and IT resources to solve complex engineering challenges while considering the limitations involved. Students will learn how to analyze, investigate, and synthesize information effectively to develop innovative solutions.	
SKEBB 4033 Professional Biomedical Engineering Practice	This course aims to provide students with a comprehensive understanding of the engineering profession, including the roles and responsibilities of engineers, as well as the profound impact their work has on society and humanity, particularly within the realm of biomedical engineering. Students will be introduced to pertinent laws, regulations, standards, and ethical considerations within the field of engineering. The course also delves into the components of EAC accreditation and the Washington Accord.	
SKEB 4083 Biomedical Artificial Intelligence	This course introduces students to the fundamentals of strong and weak artificial intelligence (AI). It discusses the theoretical and practical aspects of several approaches in AI. Approaches which emphasize on machine learning such decision trees, regression, artificial neural network and clustering will be discovered in this course. Furthermore, the courses also introduce the students with recent deep learning approach such as Convolutional Neural Network and how to implement this approach in solving real problem	
SKEB 4043 Biomedical Image Processing	This course introduces students to introductory and intermediate levels of image processing techniques. The area of coverage would be the digitization process as a mean to acquire the digital image. Next would be the enhancement and restoration processes which are to improve the quality of the image for next stage processing. Both the spatial domain and frequency domain approaches will be covered.	

CODE	SYNOPSIS	
SKEB 4323 Biomedical Devices	A biomedical device is a product which is used for medical purposes in patients, in diagnosis, therapy or surgery. It includes a wide range of products varying in complexity and application and sometimes categorized into either passive or active devices. Examples include tongue depressors, medical thermometers, blood sugar meters, total artificial hearts, joint replacement devices, fibrin scaffolds, stents, and X-ray machines.	
SKEB 4343 Cell and Tissue Engineering	Tissue engineering integrates principles of engineering and life sciences towards the fundamental understanding of structure-function relationships in normal and pathological tissues. The course will cover the introduction and fundamentals of tissue engineering, extracellular matrix, cells, biomaterials in tissue engineering, scaffold in tissue engineering, in vitro and in vivo strategies, clinical applications of tissue engineering and ethical and regulatory issues in tissue engineering.	
SKEB 4433 Biomedical Instrumentation Management	Medical instrument/equipment management refers to the process of overseeing and coordinating the use, maintenance, and replacement of medical devices and equipment within a healthcare organization. This can include a wide range of equipment, such as patient monitors, x-ray machines, and surgical instruments. Effective medical equipment management is critical to the smooth operation of healthcare facilities and the delivery of high-quality patient care.	
SKEB 4513 Rehabilitation Engineering	This course will focus on the principles and application of rehabilitation sciences and assistive technology from the rehabilitation engineering perspective. It aims to provide the students with in- depth understanding pertaining important issues in rehabilitation engineering and equip students with knowledge and skills for the application of science, technology and engineering to the design and development of assistive (adaptive) technology and rehabilitation systems. It will also provide students with an understanding of the nature of	

CODE	SYNOPSIS	
SKEB 4113 Bio-Fabrication	This subject provides the importance of additive manufacturing and its role in prototyping, development, transplant, implant, and innovation of biomedical products. Different process technologies for additive manufacturing and bioprinting devices, systems, capabilities, materials, and applications will be covered.	
SKEB 4123 Bio-Material Characterization and Analysis	This course is intended to expose the students with the most important characterization instruments to analyze the physico-chemical properties of biomaterials. A range of advanced techniques for the materials characterization analysis, including materials composition, surface morphological, thermal, spectroscopy and chromatography analyses are introduced by discussing the basic underlying principle and the analysis procedures.	
SKEB 4133 Machining and Testing for Biomedical Engineers	This course is designed for students to learn and experience the process of machining, testing and advance analysis. This course will be focusing on selected biomedical related parts and carry out course learning using conventional and advanced manufacturing techniques such as using 3D printed machine, and Computer Numerical Control (CNC) machining techniques. Once parts are manufactured, mechanical testing will be carried out using conventional and advanced method employing Universal Testing Machine (UTM) to determine mechanical properties of parts.	
SKEB 4163 Object Oriented Programming for Engineers	This course discusses how to use the C++ programming language to solve moderate to advanced problems using object oriented programming approach (OOP). It will also covers some basic data structure such as list structure and tree structure. The course covers the following syllabus: Introduction to objects, fast recap of C language syntax, data abstraction, class and object implementation, object initialization and cleanup, function and operator overloading, constants, inline functions, name controls, etc.	

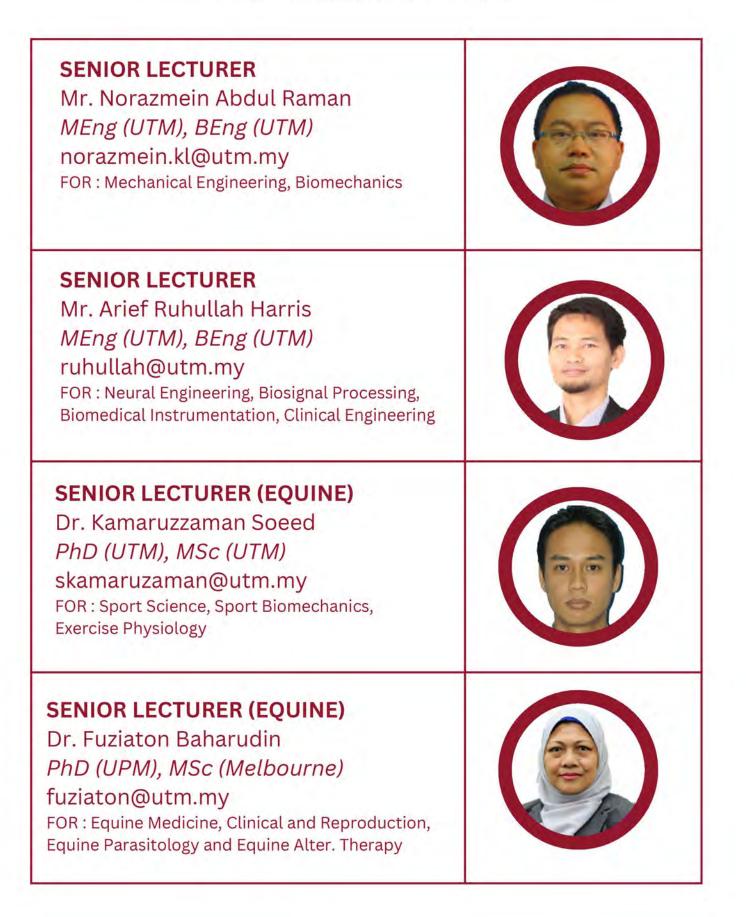
CODE	SYNOPSIS
SKEL 4543 Biosystem Modeling	The objective of this course is to introduce students to the mathematical model, methods and their biological application, and model of subsystem in human body. This course introduces students to some major views and theories in modeling the subsystem in human body. It is almost impossible to cover all subsystems in human body.
SKEL 4563 Biosensors & Transducers	This course is intended to provide a broad introduction to the field of biosensor and transducer in the bioelectronics industry. Fundamental applications of biosensor theory are discussed, including biorecognition, transduction, and signal acquisition/processing. Design and fabrication of different types of biosensor are explored, ranging from electrochemical to optical systems. Discussions on the current state of the art biosensor technology to enable continuation into advanced/future biosensor and the applications in biomedical, bioenvironmental, food safety, and biosecurity are given.
SKET3583 Digital Communication System	This course introduces the fundamental concepts in digital communication system. Main topics to be covered are information theory, baseband transmission, detection methods, signal space analysis, digital modulation and channel coding. The system tradeoffs in designing a digital communication system will also be discussed.
SKET 4533 Wireless Communication Systems	This course introduces students the concepts and principles of mobile radio as well as satellite communication systems. Topics covered include mobile radio propagation, multiple access, cellular concept, modern wireless communication systems plus operation and subsystems of satellite communication. The course will utilize parts of the learning materials and/or feature invited speaker(s) from the Ericsson Educate initiative.

CODE	SYNOPSIS	
SKEL3613 Semiconductor Material Engineering	This course introduces students to the characteristics, operation, and limitations of semiconductor devices. In order to gain this understanding, it is essential to have a thorough knowledge of the basic physics and operation of the semiconductor material. The goal of this course is to bring together crystal structures, quantum mechanics, quantum theory for solids, semiconductor material physics, and fundamental of pn structures. At the end of the course student should understand the operation of present day and future electronic devices.	
SKEL 4213 Software Engineering	This course introduces the theoretical principles and practical aspects large scale software development. The theoretical principles covered include understanding customer requirements, software development process, program design, collaborative development and testing. The practical aspects covered include Linux, Python and version control. Emphasis is given to object-oriented analysis and design (OOAD) as well as the use of UML in the design activities.	
SKEL 4343 Information Security	This course covers the basic principles and techniques used to protect information. The area covered begins with description of the various structure of communication systems in practice today, security architecture and models, issues related to legislation and ethics, and physical security. Consequently, the course will cover areas applicable to electronic and communication security with description of the various types of cipher systems followed by its use in authentication. Finally, applications in telecommunication, network and the internet are demonstrated.	
SKEB 3503 Physiology and Introduction to Medicine	The course is designed for students with engineering and technical background as an introduction to the basics of physiology and anatomy of the human body system. The course includes discussions on common physiological & anatomical disorders and the relationship among different body systems in maintining homeostasis. The course aims to prepare students for meaningful interaction with medical practitioners when performing medical-related work or collaborative research.	

DIRECTOR Assoc. Prof. Ir. Dr. Asnida Abd Wahab PhD (UTM), MEng (Bristol) asnida.aw@utm.my FOR: Thermography, Medical Imaging, Image Processing, Assistive Device, Artificial Intelligence
PROGRAM COORDINATOR Ts. Dr. Aizreena Azaman PhD (SIT), MEng (UM) aizreena@utm.my FOR : Rehabilitation Engineering, Motion Analysis, Biosignal Processing, Bioinstrumentation.
FYP I COORDINATOR Dr. Mohamad Ikhwan Jamaludin PhD (Uni. of. Hyogo), MEng (UiTM) mohamad.ikhwan@utm.my FOR : Biomaterials, Tissue Engineering, Biofabrication, 3D Printing
FYP II COORDINATOR Ts. Dr. Raimi Dewan @ Abdul Rahman PhD (UTM), MEng (UTM), BEng (UTM) raimi.dar@utm.my FOR : Telecommunication Engineering, RF and Microwave

INDUSTRY TR. COORDINATOR Dr. Aisyah Ahmad Shafi <i>PhD (UTM), MEng (UTM)</i> aisyah.as@utm.my FOR : Biomechanics, Finite Element Analysis, Material Characterization, Textile Engineering	
SPACE PROGRAM COORDINATOR Ts. Dr. Mohd Riduan bin Mohamad <i>PhD (Strathclyde), MEng (UM)</i> mohd.riduan@utm.my FOR : Regenerative Medicine, Biomechanics, Bioelectricity	
PRISMS & MASTER TC COORDINATOR Dr. Siti Ruzita Mahmod <i>PhD (UTM), MPhil (UTM)</i> sruzita@utm.my FOR : Physical Rehabilitation, Rehabilitative Technology, Excercise Biomechanics & Physiology.	
PG PROGRAM COORDINATOR Dr. Izwyn Zulkapri <i>PhD (UTM)</i> izwyn@utm.my FOR : Sport Science, Physical Fitness Assessment, Sport Performance Analysis	

ASSOC. PROFESSOR PM. Ir. Dr. Maheza Irna M. Salim <i>PhD (UTM), BBMedEng(UM)</i> maheza@utm.my FOR : Clinical Engineering, Medical Imaging, Image Processing.	
ASSOC. PROFESSOR PM. Ir. Dr. Tan Tian Swee PhD (UTM), MEng (UTM), BEng (UTM) tantswee@utm.my FOR : Biomedical image and signal processing, Biomedical instrumentation, Wireless power, Al	
ASSOC. PROFESSOR PM. Dr. Rania Hussein Al-Ashwal <i>PhD (UTM), MSc (UTM), MBBS(Yemen)</i> rania@utm.my FOR : Medicine, Health Science, Anatomy and Biotechnology	
ASSOC. PROFESSOR Assoc. Prof. Dr. Syafiqah Saidin <i>PhD (UTM), BEng (UTM)</i> syafiqahs@utm.my FOR : Biomaterials , Tissue Engineering, Drug Deliver, Actibacterial	


SENIOR LECTURER Dr. Hau Yuan Wen PhD (UTM), MEng (UTM), BEng(UTM) hauyuanwen@utm.my FOR : IC Design, Biomedical Embedded System Design, FPGA Prototyping, Data Security	
SENIOR LECTURER Ts. Dr. Jaysuman bin Pusppanathan PhD (UTM), MEng (UTM) jaysuman@utm.my FOR : Tomography for biomedical and process industry, Sport Tech	
SENIOR LECTURER Ts. Dr. Muhammad Hanif Ramlee <i>PhD (UTM), BEng (UTM)</i> m.hanif@utm.my FOR : Biomechanics, Biomedical Design, Prosthetic and Orthotics, Biomaterials	
SENIOR LECTURER Ts. Dr. Muhammad Amir bin As'ari PhD (UTM), MEng (UTM) amir-asari@utm.my FOR : Deep Learning, Computer Vision, Artificial Intelligence, Image Processing, Sport Analytics	

SENIOR LECTURER Dr. Ahmad Zahran Md Khudzari PhD (Aston), MSc (UTM),BEng (Japan) zahran.kl@utm.my FOR : Biofluid Dynamics, Cardiovascular Eng, Biomedical Engineering, Biomechanics
SENIOR LECTURER Ts. Dr. Mohamad Najeb Jamaludin PhD (UTM), MEng (UTM), BEng (UTM) najeb@utm.my FOR : Biomedical Instrumentation, Embedded Circuit & Systems, Biomedical Signal Processing
SENIOR LECTURER Dr. Noor Aimie Salleh <i>PhD (UTM), MEng (UTM), BBEng(UM)</i> aimie@utm.my FOR : Biomedical Signal Processing, Electrophysiology, Artificial Intelligence
SENIOR LECTURER Dr. Norhana Jusoh <i>PhD (SNU), MEng (UTM), BEng (UTM)</i> norhana@utm.my FOR : Biomaterials, Tissue Engineering, Biosensor

SENIOR LECTURER Dr. Nurizzati Mohd Daud <i>PhD (UTM), MEng (UTM)</i> nurizzati.md@utm.my FOR : Biomaterials, Tissue Engineering, Drugs Delivery	
SENIOR LECTURER Dr. Norjihada Izzah Ismail <i>PhD (UTM), BSc (IIUM)</i> norjihada@utm.my FOR : Nanomedicine, Biosensors, Phytochemicals, Tissue Engineering, Medical Microbiology	
SENIOR LECTURER Dr. Siti Aisyah Mualif PhD (USM), MSc (UiTM), BSc (USM) aisyahmualif@utm.my FOR : Molecular Biology, Antibody, Antigen Proteins Expression, Bioensor	
SENIOR LECTURER Dr. Mariaulpa Sahalan PhD (Sydney), MSc (USM) mariaulpa@utm.my FOR : Medical Imaging, Image Processing	

SENIOR LECTURER Dr. Wong Tuck Whye PhD (UTM), BEng (UTM) wongtuckwhye@utm.my FOR : Stimuli Responsive Materials, Soft Robotics, Structural MEchanics
SENIOR LECTURER Dr. Muhammad Amin Abd Wahab <i>PhD (UTM), BEng (UTM)</i> muhamadamin.abdwahab@utm.my FOR : Ultrasound, Signal Processing, IOT, Embedded System
SENIOR LECTURER Dr. Mohamad Ikhwan Kori <i>PhD (UTM), MEng (UTM), BEng(UTP)</i> mohamadikhwan@utm.my FOR : Fluid Mechanics, Mechanics of Materials, Artificial Organ and Prosthetics Engineering
SENIOR LECTURER Dr. Lukman Hakim Ismail <i>PhD (UTM), MSc (UTM)</i> lukman@utm.my FOR : Healthcare Management, Human Factor, Patient Safety, Biomedical Engineering

SENIOR LECTURER Dr. Saiful Izwan Abdul Razak <i>PhD (UTM)</i> saifulizwan@utm.my FOR : Nanomaterial, Tissue Engineering, Biomaterial, Polymer	
SENIOR LECTURER Dr. Muhammad Faiz Md Shakhih MSc (UTM), MBBS (Ireland) mfaizms@utm.my FOR : Biosensors, Human Physiology, Biomedical Engineering, Signal Processing	
SENIOR LECTURER Dr. Nadia Shaira Shafii BEng (UTM), MSc(UTM), PhD (UTM) nadiashaira@utm.my FOR : Biomedical Engineering, Biomechanic, Fluid Dynamic	
SENIOR LECTURER Dr. Siti Balqis Samdin BEng <i>(UTM), PhD (UTM)</i> sitibalqissamdin@utm.my FOR : Biomedical Engineering, Signal Processing, Artificial Intelligence	

For more information, kindly contact :

FKE ACADEMIC OFFICE UNDERGRADUATE PROGRAM

P19a, Faculty of Electrical Engineering Universiti Teknologi Malaysia 81310, UTM Johor Bahru Johor, Malaysia

- undergraduate-office@fke.utm.my
- ElectricalCircleUTM
- https://linktr.ee/ugskeutm
- S 07-5557029 / 5557007 / 5557238

Revision Notes :